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TC11-1. Introduction.

Tircherls Commentary
.

Chapter 11
."

- VECTORS AND CURVES

In this chapter we introduce the calculus of vector-functiops of a single
r

'real variable. For this purpose-we need the elements of vector algebra and

vector geometry. This preliminary material, Sections 11-1 to 11-4, can be

,developed without the'background of calculus and it seems likely that the

vector approach to geometry will find a permanent niche in the precslculus

curriculum.

At this time, however, we cannot presume that this material is part-of

the background of, any substantial number of students -; therefore it is not

idcluefed in the review appendices but presented in the text at :the point where

,it is to be used.

The value sf the vector approach for properties which are independent of
y.

the coordinate. frame-ls demonstrated here by the applications to geometry and

mechanics (Chapter 12) but this aspect of vector methods has extensive appli-

cation4 far beyond the confiries of this text.

Solutions Exercises 11-1

1. WhiCh of the following quantitirs are independent of the choice of
coordinates? -

(a) The distance between two point
(b) The distance of a point from the igii.
(c) The angle betWeen two lines.
(d) The angle of inclination o4' a line.
(e) The area of.gt standard region under the graph Ly = f(x) .

(f) .The area bounded by two curves-

The point Of this question is to make the student aware of ImplApd

reference to a coordinate system. Re6thould realize at once that the

quantities decribed in (b),-(d) and (0) are defined only,In reference

to a specific coordinate a7Srstem while those in.(a), (c), and (f) are not.
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TC1172. Vector Algebra.

Although 41a principal use of the concept of vector for geOmetrical

applications _.is. .1.1.1_,.the_glalse of "_position vector" or dire ted segment with
initial point at the origin, the concept of position vector is too restrictive"
to cover all applications. In Section 11-5, for example, we introduce the
tangent vector as a functionof the ffarameter along a curve- and have no

ediate'reason to refer all the tangents,tO the same origin. Furthermore,
e use of the translation model in which.a vector is thought of as a mapping
operation on the set of points in space yieldi a natural interpretation of

,,

e addition of vectors as composition of translations; while to introduce
addition o" position vectors or points must see cial at the beginning.

In some texts the directed segment A

in the sense of being "tied down" to the

by analogy, is called a free vector, fre

bound vector, bound

The vector

ent to an initial

According' td the dictionary (Webster- Merriam).,- the term "scalar" is

derived from the conception of the real numbers as a linearly ordered set or
"scele." In the text we prefl-.to stress the idea of a scalar as an operator;
this is more in keeling with, modern usage since the elements of any field and,
.Ln particular, the .complex numbers maybe scalars.

,In the text we carefully maintain the distinction in notation Between the
point P and the vector /5 for the purpOses of exposition. This is a nicety
which may be abandoned once the distinction is clear.

Solutions ERercisgs 11-2

1. Let U and V be'any points and 17 V the corresponding position
vectors. In terms of fr and. V what vector is- represented by the

directed segment UV ?

Note. Theflresult of this exercise is assumed later as everyday knowledge.

This corresponds to a translation T such T(U) = V ; hence,
T U = V . Thus,

= V 1.7 .
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2. In Figure 11-2e, one diagonal corresponds to the sum U + . What
vector corresponds to the other diagonal?

In the figure-, take the orientation of the diagonal .corresponding to SQ .

Then 4 = = [ + (41)] Ir; hence,-by Number 1, SQ correspOnds to

- -g = -11)

That is, the difference- V - tr .

3. Give a geometrical justification for the inequality

re 4- < 1U1 4- 171 -

In Figure 11-2c, we have -a .76 +1 where tr and I are not collineg.

The inequality merely states that the? length of one. side of the triangle

is less than the sum of the other-two. If 17 and I <1;ii..e collinear, say

rf ,
I 1 > 0 , then -TY +17 = (7%. + . Since IX + 11 + Ill

the result follows from (11).

4. Let A and B be any given points. Characterize geometrically each.of
the sets of points

(a) [X : rt = ri .

(b)

4.

Thi-s is the set wof terminal points of the directed segments AX

with initial point at A sand length r . Hence, for -r >0 it is

the sphere (or circle in the plane) of radius r ; for r = 0 it

consists of the point A alone; for r < 0 it is the null set.

{X: 11 -A1 < r) .

WO.

For r >0 , the interior of the sphere (or-qircle) in Part (a) ;

otherwise, the null set.

(c) : ,IX - Al > r3

For _r > 0 , the exterior of the sphere (or circle) in Part (a);

for r = 0 , space with the point A. deleted; for r < 0 , the

whole space4

a
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(d) : . xit ,,x real) .

.

If A / 0 , the-point 0 and] all points which lie in the direction
of A from 0 or in the opposite direction, hence, the 'line OA
If A = 0 , the point 0 .

(e) (X : g xt >o)

If FA 0 0 the-point .0 and all points which lie in the direction
of A fr dr-30 , hence, the ray in the direction of with initial

4
point at 0 .

A

( f ) (X : 2 . r ÷ N.13- , ),. > 0)
7. , ..

_,--,--
If B / 0 the ray in direction of g/ with -ini-0.8.1 point "at A .

. e.

<g) : X =I ÷ , x real) .

If B f 0 1 the line through A and parallel to

(h) {X: IT - = -131) .

The set of points which lie at equal distances fi-om 6o.d B ,

hence-the perpendicular bisector (Plane or line) of the s4ment
AB .

RA.

/
5. For any non-null vector A obtain the unit vector (vector of length 1)

in the direction of A NI&

Let 17 be the des it - vector. 'We have U = %A.* where X > 0 .

From -(11), under the condition of -*.tne problem,

hence., X -

r1-= 1?1 =x1r1 =

832
.10
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6. Give geometrical derivation for the associative law (0) for the addition
of vectors.

In the figure,. the operations indicated by the s-..-ms (A + + and

A

G=A+(B+C)

A+ (B + tr.) are. carried out schematically. The problem is to show that

the directed segment is -brie same as 52 . (In the figure, the points

0 , A , B , C are not necessarily coplanar.) It j...) sufficient to show

that E and G are the same by proving that the vector W corresponding

.41' to AE is the same as the vrctor B + C corresponding to AG . But

this is transporent, since W = C B , that is, the composition of the

translations B and o applic 4n that order. Thus, by definition,

V = C . From the parallelogram law (commutativity), I = B +

which completes the proof.

Alternatively, translations are functions from. E3 onto E3 . Since
raddition translationd amounts to composition of functions, the result

-

is immediate fro- the dssociativity of composition. -

r

7. From the laws of operation, A1-4, M1-2., Dl-2, which define a vector
space, derive the following consequences.

(a) a0 =

Follow the proof of Section A1-1, Formula (8): observe that

X.7,!"7 + xO = x(0 + O) (D2)

?JCS-- (A3) ;

that is, for A = ?+.15 ,

(1)

henc

-X + = ;

+ 1 + -A = A + A = 4 1.---A4)

833 N\
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Z.+ + (4:) 3 = 6 .

r

. whence,

thence,

that is,

1.

(A2) ;

X + (Au.) ;

= 0 (A3) ,

which was to be proved.

(b) 07-=

Note that
1.

= (2 + o = 61' + OV
"co

i.el';'for A = OV ,
m6. .

= -A" +7.k:

(DI)';

nos

. which is the same as Equation (1) in Part (a). Then proceed as in
Part (a). .

Y

(c) If X. / 0 and V # 0 then .

C

4 2

(appose on the contrary, that X / 0 , 7./ 0 and X.17 0 Then

1

(by Part (a)),

but

1
( x.v)

(x7.17) xo_
57.

= 17

Cot'Sequently V = O , a contradict

(a) '( -1)V =

4011 Observe thAt a

+ ( -1)V = (-i)ir. (to
Ci (-1) T7 (Dl)

cif = O (by Part (b)Iii,

hence (-1)17 is inverse to V.

834
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(e)7 If '15Z # .0 the vector equa=b5,0,p "-F 711.
'4* 4 \

r

f
has they un.5:q.0 solution

4

ffori,

It' is to veiify au-egNpyn-thipitA = - U)

q0.

' On the other hand, if 3r !.!' -a solution,t+heil
. A -

.

(XI + U) -k-c-n'..= 1. 4- (-1)
or

hence,

-CU ( -U) = - -17

= +

= xr;

r (ot) - 17)

is- -a -solution.
"

, f = (k.- 502 , 4
( IV2 )

7 = 13Z = Ire (K) . r

? L,...

/ -L

.which proves that the only possible solution is th4 given one.

8 .
,

Show that the set of continuous functions on the interval EO,IJ is a
tlinear vector space over the real numbers where addition and multiplica-

tion have theiriconventional interpretations.

The cri 'cal question is that of closure, namely, that the sum of con-

tinuous unctions is a continuous function and that the product of a

continuous function with a real numberis continuous. The remaining

actor space axioms derive it;nediately frim the laws of algebra applied

to the definitions of function and sum of functions.

Note that the set of piecewise monotone functions does not satisfy

the closure properties
e

-':\''N......,

of the integral.
, r

f
./

\ .
.....

. .

(a) Let Zi 4:2 be linear .vector spaces over the real numbers.

Show that he set of ordered pairs
<4 r

A 9 X-2 "V; ) : 171 i 'C-1. ' '12 s °C2)
is a linear vector

salp.ce over the real numbers, where, for T.ra. , 111e. Zi and
U2

'
it
2
i 4 addition and multiplication by a scalar in

42. 9 .14f2 are defined by

and that is- what4makes it unsuitable for a theory

. 5.

835
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:7

and_ r

N.(-17 ) = (XV
11 2 1 1,02

The space .C1 0 Z,2 is known-ra's the direp

(V1;72 + 13, 2 12)-

I

.
5
1

t
..

i ---..., . .. AClosure, computativity and associativity lof addition-pre obvious.
..-

_.,.. .... . _
The null vector ix. Z e 4. is .simply ...(O"' 0 ) where 0 and1 2 22- 2 1 eip
35" are the null vectors for ,.C. and .C. respectively. The2 1 2 ' P

_,. /inverse to (iti;q2) is (-y1,-;v2) where -Vi is inverse to Vi--"in

zi , (1=1,2) .1 ...The remaining laws follow siqiilarly by direct appli-
r . .

. cation of the definitions of the operations.

Note that in the definition of addition or ordered pairs the

sign "-PT is used for three 'kinds of addition, the/addition in

1 0) Z2 -which is being defined and within the parentheses, an

addition in .4
a_

and Z.
2 Similarly, three distinct OperAplotts

of scalar multiplication: are involvqd inCe definitig of product.
. A

(b) Show that 6Q_ , the r al number field is a linear lector space over
the real numbers, whefe addition and multiplicatison is now ordinary
addition anal multiplication of-numbers. The set-- Ga. considered as
a linear vector space witE a'lehg7th defined as 'xi for x e R. is.
denoted by ,E1 (one-dimensional euclidean space).

The linear 'vector space postulates here are direct consequences Of
AN

the field postulates for
-

.efe.. (Section A1-1). °' .

. 0_
Q>F1'.

1(c) Shot,/ that euclidean two-dimensional space E2 is given by

E2 = El OD El ,

where Iength for aA e E2 , given that- I: = (a,b) nd /
(a,b)

.-

is defined by 4101

Pq . 1st2 -1.- b
7.

.
7----
-4

.. .

Similarly, show that euclidean three-dimensional E 3 is given
by

,

_._
E3 . E2 E) El

where:length for '74. Ea ., given in the form V =
-.

with
A E. E2., c E: E1' is defined by

1

- .

. %,,,

171 = A77-4- 2 -

..

Z.

S 836
1.4-
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' 0

. -..1.. I ;

This is' the usual cartesiaii presentation of E2 with the

pythagorean *distance for7muli. -4

- I= the representation o ,.

.. ,we".may write .the'2reCtor V in

the forM.-.
..e: ..-

i- .-
i ,-.:- '

,...-.

..-

l''.1

A' = (.2 c) .= ..((a b) 2, c)- Cg..15cj'. 0 ..2 . 2 : & '
. . . . ."

parentheses
. .. ,

*with.. a , b
0.,

c e le ., andftfie-!ilit4~nal are dropped as

redundant infOrmgtion._ For ct.b.A-1.1enitlia of -v. lie have
c..

-A..

, . _.
..---A

.,..., 4, . .

- i

11-3

b.
2. 't.?..111 2

l'=which is the pYthagorean distance formu3,-akiE3

TCI1-3. Vector Geometry..

a

r

.177-----
Solutions Exercises 11-3. -,S.,!.....,

.

....--, 1. Verify th'at Formula (2) 'gives The famiIipr formulas ,.fOr-the.--Midpoint of

a segment in terms of _coordlnates for P .arid QI. fy- :

. J ' '.. - !. -___

... , ,-',

Set P = (xi,yi) , Q =_ -( 2,y2)' and X = (5F,3;) 'vase::
-.... -.... .0_,._.:

4.-

c.
T .4a.-- -4) _ ( -

2 2
Yl. + Y2)

2

x.., 4.- x2

1/4...
'

to obtain from (2),

0 x174- Y1 + Y2
x Y2 2

4

-

Find the:equation of the line-through the point P = (1,2,1) pagaliel to
the position vector (013,4 ; then give the coordinatesenf a pAnI on.
the line at distance 1 from P

The equation ;,f the line is

5t... (1,2,1 ) - :t (0,3,4)

.6; ;

From

=Tr -15-1 = 5It!

the two points on the line at unit distance from P are given by.

t = t+ 1 hence"- b (1, 2 + -1L)_ , Y - 5., 5

837
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3. (a)
a ,

Is P 7.,(2,1,2) inthe plane 0? containing
B = (1,1,2) , C = (1,3, ).? ,

/
.

..
,- ....- :. -
.

The Mane. Irti) is gi

Or

by the equation- .

'X = - A)

-A

= (1,1,3) + la( 0,0 ..-1-) I- V(0,2,0) .

P is in 0) if and only if
, .

- (2,1,2),.=',1(1 , 1 + 2v, 3 - ti.) -

:\.,

for some P. and v , but/this is clearly Impossible since the

x- components are distinct.
...

(b) ,Find a vector- N normal to the plane 6Y .

A vector AT is normal to 0 if and only if it is perpendicular
to the vectors B and

only
-14

T =-i-q.- (c - = 0 .

Consequently, if N = ("NxliTylN) , then

-N
z

= aff = 0

and It.= (Nx10,0) = Nx(1,0,0

where N. may be any number.

(c) Find the distance from P = (2,1,2) to the plane 0) .

The distance is; pp - -41 where Q - is tile foot of the perpendicular

froth. P to 6),. Thus Q is the Point of intersection with ea of
the normal line

3t = 11 + Ng = (211,2) + X.(1,0,0) ,
':".

. ,
. . _

0 .
.whereit,..1X1 = if - Xi . Thus Q satisfies the simUltaneous con-;
ditions:

= (2 +7.;1,2).= (1,1+ 2v,3 -

whence Q = (1,1,2) and

115 -41 = I- =.

7=-

i. 838 1 6
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Prove the corollary in Example 11-3c.
I --,, , .. .- .. .

From Part (b) of E:c.am:ple 11N-3c, there; exist scalars p.

3- 1
such that _ 15

11 =3

= 1,112 + 1.; -4/' The question is one of uniquenes. Suppose there exist_

other scalars '1.2 v2 with, say andvi and v2Y. en

-(112 + (v2 vin ° : Consequently

and Y are collinear a Contradiction.
- ;

4

2 - 1, 5z,
v - v -.2

2.1 1

...I.

s. .5. Let' A and: 33: be noncollineer vectors. Determine the equation*--Of the
ray which bisects' LAOB

Let X be any point of the ray bisecting LAOB . , andand

are coplanar..

(±)

10

. -
Therefore there exist scalars such that

The condition that X lies in, the interior of the angle implies a 5 0

and 13 > O . In the figure, with r.,-= fa and note!. that

LPDX LX0Q. (angle bisector) and4i LX0Q = LPXO (PX d OQ are

parallel) . Therefore LOPX is isosceles and !CAI = 1r3331 . For

-jt

simplicity, introduce the unit vectors and in the directions
, IIII 1ST

.... - ,....,of A and -3-3. , respectively. Set a = alA 1 and b = f3 III ; .hus a = b

and (1) becomes,

a( ), . (a. > 0)
gi ISI/ 4 .

. -

Conversely, any pointk. X defined by (2) lies on the angle bisector since

ige figure OPXQ is a rhombus.. . (

4

;zs

839
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= .

. t ,.,. .

6. Verify that the results of (1)', 'of Examples 11-3a, b,,and of (4). do not

_ -
depend on t e choice of origin.

//-%.s.
r . . ' e

Let' be,the new origin. Each vector 17 must be replaCecfb.Y 1- 11
. .. , ....,.-

.-.
to obtain he corresponding results in the hew -system

In ( obsei.waitleat'

(1 -

(i - - "a) - .
. .

In Example 11-3a observe that 714,-finlarl'eoluation from which theI.result follOwS is expressed wholly in terms of the'differenCes of vectors,
2. ...N.

.e.g.0.14.141-'Mi ; brit a diffeelIce.-0 V is not affected by a change Of:
. _

origin,
_- % .

hence, the equation holds in the new. system.

In Example.11-3b,txo things are involved, the equation of the median

4.nd the eqUation of the centroid. For the median, note that

x2 _ xyr)
P21 2 2 3

4

= ) r63

and for the centroid, that'

+ (g
3
-V)] ,

- W . 1-1C.rk + - 17
3 .

I (1 - + CP - fit' -- 1-71)
.3 1 2 3

In .0.0, obServe that

- . A + p.(13- - 31) v( e - 1) 7

= (A - 17) + (-)

. (a.) Show that the'vec-6or
are noncoplanar.

4..vE CO- =

and C = '503).

From Example 11-3c the three vec*as are coplanar if ang_only if

there are three scalars, b , c not'EL1 zero such that .:

bB = O .

Insert the coordinate representations of the-vectOrs to pbtain the

three scalar equations

N-13 4 d
1 .



-a+ b-1: c=0

a+ b 3c = 0 ,

..*
3a 4- 2h + 3c = 0 .

These .equations have only the trivial solution a = b =

"N. 11- 3

(b) Express the vector D = (2,1,2.) in the form of a linear combination

= ea -I- VP' + 65 .

The coefficients a -% c %are soletions of the linear 'system

a+ b+ c = 2 ,
a -+ b + 3 c = 1 ,

3a + 2b + 3c = 2 ;

R

' 2
7

whence a
-
= -

2
b = 4 c =- -

1
.

. Show that given'InY four vectors A , B , , there ate constants
a , 1 c d , not all zero, so that

.' b c 4- dr) -1- .

(Hint: Use the property that if a line is not parallel to a plane it
must intersect that plane at precisely one point.)

*

If the tie vectors It-, B , -a- are, coplanar then by Example 1L-3c' we

already have such a relation for the4hree, :a A a 15 ., where
N '

are not all, zero. 'Consequently,

aR + bB + cC ± d5 = 0 .

'Suppose noi:i_the7t the three vectors A 6 are not coplanar,

--then either 15 is parallel to the plane .saxr, or the line X = ?,.T6

--ret*Gft

meets it -in exactly one point.

If is parallel to ABC then there exist a directed salient

./1212,,, in ABC which represents D Thus, in the:nota'tion of ( 4 ) ,

-().
, (112

µ1)(n A) (v2.- vi)0"

64,

which immediately yields a relation of -Chef desired ford.

If 15 is not parallel to 'ABC -there is a number. X for which

XD is the .positidh vector of a point in the plane. Furthermore X O

since ABC does not contain the point 0 (A 1", C are not Coplanar).
S . 7



°

Consequently, by (4)

(2) = A + "p.(g - v(e. - 1)_

which tmmediatelli- yields the desired relation.

9. The statement of Number 8 implies that any four vectors are linearly
dependent,-namely that,ione can be expressed as a linear combination of
the Other three'. Show from the assumption that E3 is not contained in

a plane that there do exist three linearly independent vectors in E3 ,

that is; vectors A , for which the equation

b"A + cla =O

is satisfied only if all three scalars a , b are zero.

Since E3 is not contained in a plane there exist at least one point A
other than 0 one point B which is not collinear with A and 0 ,
and one point .0 which is not coplanar -with 0 , A , and B Since
,B and CL are not coplanar the condition of Example 11-3C cannot be

satigfied..

10. Prove if A , B C are not coplanar then any vector 1. can be repre-., sented.ai a linear combination ,
.

2 = aA + bB + cC
and that the representation is unique.

If * is parallel to the pIang ABC then Equation (1) in the solution
of Number 8 gives the &sired representation. If 2 is not parallel to

..Q.

ABC , then, since X. 0 in ration (2) of the solution of Number 8,
the desired, representation is obtained on division, by ,,,... The repre-

sentation is unique, for Ir. ail. + -1,3:31 4 qi-6-=-er2r. + b2g+ c
2C thena

(a - a A + (b - b yg + t.1'- c2)C = 6. Bu 'ti. B C are not CC:31 2 1 2
( planar and, therefore, by EXample 11-3c, a2:= 42),-bi = b2 ,and. ci =ca.

4

...s.11. Show if _TI. and t" are not collinear thattITC = A + ig't qC is the
- _

equation of a plane passing through,thepoint -..4 and parallel to the
vectors 13 ec'd . We say that a'plane is parallel to a vector V if
it'contaims-a directed segment PQ which_Apresents V .

20



This. definition of parallelist; is adopted becabse it generalizes to
e. 2

spetes-of any dimensSs For example, in E , two linesare either

.piirallelOrintersect-.but in' E 3 there is a third possibility: two

lines may be sked. Si/ailarly, in E , a plane and'a line may be skew,

thetlis, neither parallel nor intersecting. Thus the-property given as

the hint in Number 8,1; a characterization of three-dimensional space.

':...._Observe first :on taking p = q = O. that A is a point -=of the set

CP= CK : X)= A + pB + qC , p , q- realI Now if X , Ye 6) then

represented by thekdirected segment' XY . Suppose'

Is- 4-- q1t. and Y = A + p2S q
2

then the segment'

XY ..:= : = (1 - x )X ÷ = A +
+-

7`(P2-P1)1t1.-÷ [1 +7`(q2

0 <7,. < 11 ,

is clearly contained in ) . Now B is represented in 6) by ICY when

p2 = 1 and pl = qi = q2 =-0 , and 6 is represented by XY when

q2 = 1 and pl = p2.= ql = 0 (The choice of coefficients is obviously

a
not unique). 1

So far it_is not determined that 0) is a plane, only that it con-

tains A and is-parallel to B and C . Observe that 0) can be
-a.* -a.

expressed in the form (4) by setting ,..il =B -I,6..c -A. Thus a)
* *

, B , C are not collinear. But the three points are ,

ancollinear if an only if Btf -1 = 1 and e - A. = "6" are collinear.

C nsequently, if 1 and 1! are t collinear then 6° is a plane. If
,.

S. and. C are collinear there are two possibilities. First, if

-+-;6" = 15" then OD consists of he. point A alone. Second, if.one of

the two vectors is non-null, say C / 0 , then Op= (X..: X =I 4 7,..63- and

0) is a straight line (see Exercises 11-2, No..4(g)).
if

is a plane if

. (a) In the accompanying figure; R is any point on the line Agis .

843



Obtain the representation B . aX + bB , and determine ILL in

terms of .a and: Ab

Since R is on the line .AB ,

.11E1

.

1 - .

tXI
then (1 - X)(11- --3t) . x(it - t) , and.

11
is the desired

ratio. Since A. and B are not collineir. the representation of
R as a lingir combiniation of r and 1 is unique. We conclude that

-..

X.-b, 1 - X = a , and

1E1 '11)-1

it"

A(b) In the accompanying figure C" is any point not on a side of the
triangle.

A
I1

Set ft 71 = cca.- ,

- B -=---f3(15 - , and

= - 4) .2' Show
that

c431' = 1 .

110.'

This result 'together with its converse (namely, if P Q R
divide their respectlie sides so that this relation holds, then 'the
lines AP , and OR are con rent) is tevals Theorem (Giovanni
Ceva, Italian 1647 - 1736).

From. Part (a),

. (1 - x3r .

and, since C is collinear with R

cat = a(1 - x)x 8(g

Set

In terms of' X , ,_V:

1.

111, , TzN.

22
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(1) _ = 1=E
1.- % 1 - v.

Now, for some real p f

= (1 - p)A pe r:

[(1 - p) +-pa(1 - %):it + ped

Since and B are- noncollinear, the two representations of

mus be the same; that is (1 - p) + pall - %) = 0 and pd% = µ .

Eliminate p to obtain

a%
1 - a +

whence, from (1),

SiMilarly, for some real

hence,

From this

.(3)

1 - a
a%

41

a ..(1 _ q)53- q6

qa(1.- %)A [ (1 - q) + qa%] B ;

v = qa(1 - %) and' (I - q)-+ qd% = 0

16_
a(1 - %)-v
1 - d. '

a(1 - %)
1 - a

and, from (1)

-Multiply the expression for la in '(1) by the expressions for p and
T in (2) and (3) to obtain the desired result: 00T-= 1

Conveisely,-, suppose afIT = 1 . Take C as the intersection of

AP and BQ , then prove. C .11es on OR . From the two representa-

tions of 15', write. t as a linear combination-of A and B-:

-6 2 -

p p

Similarly, from the two representatiOns of

zr. 1:4:÷ 1
T3. .

q

Consequently.-

845
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-(4)

and

e
P-

(5)
p(ci v = q(p -

P

From (1) and -(5),

13,

hente, since apr = 1 , .

.

Consequently, from (1),

. But, from (4)

p 1
-

q(P 1)
.

(1 - x)X 4- . x) + .

P=-3---(r =' aR
P

- I
:where. a = pea:: . "'hus the converse is proved.

Observe in the proof of both the proposition and converse that -=

P ,Q, and .R'need.'not be interior points of their respective sides

but any points of those lineS other.than.vertices. In that case we

still have atry-, 1 where a ; 134'., and r- are defined by (1) but

the geometrical interpretation has to be altered in replacing the

lengths-by signed magnitudes. Thus we take a =
RB

ratio we mean

direction, and

where by this

lEalif the-two directed segments have 'the same

ICI

if the directions are opposite.

Note that the result of Example 11-3b is an immediate con-_

sequence of the converse statement,

Note also the following simple synthetic proof. Through 0

draw a parallel to AB and extend. AP and gi -to meet the parallel
*.

to A and B ,



4.

respectively. Then, by similarity,

AR 'A*0 VI'

OB P0

11-3

From this, the result is immediate.
r.

Conversely, If the product is 11 draw. BQ angi AP and

denote their intersection by C . Extend OC to its intersection

R. with AB . From the o riginal proposition

hence,

AR

R B

BP

PO

AR AR

= 1 ,
OA

V

which implies R = R . Hence the three lines AP , BQ OR are

collinear at C .

Both proofs of the con-;.r'erse require that AP and BQ intersect,

If not then :AP , BQ , and OR are : parallel and a separate proof is

needed:-

-

13. Let (0ABC) ..be parallelogram, re the midpoint BC ; and E t)ae
midpoint of CO Show that the lines AD and AE divide the diagonal-.
OB in thirds.

J

"
847



Vb.

'1- 3

r
Let F be the point where AE meets

0

OB . Note that -2"
2

-d" and

B

= . Consequently,

= p.(r -6")

( - 7 (1 - v)A v

Since and C are noncollinear, the two representations of F a

linea combination of A and C must be the same:

11-= 1 - v =22
It follows that p. , or F =.3 B . In the same way it may be shown

G of AD and OB , that -6" = 3 B .for the intersection

Al'. Let P
1

P
2

, Pn be th.9 consecutive -vertices of a -regular polygon

of n sides. Show that P.
1

P
2

. P
n = 0 where 0 is the center

of the polygon. Is this result independent of the choice of origin?
. ,

27rConsider a ,rotation R about o-.through the angle n Arotation
. .

about 0 maps any figure into a congruent figure; hence

R(0' -1-1) = MCC) + R(VT) .; Furthermore, in such a rotation thrOugh an

angle between 0 and -27r , only the'point 0 remains fixed. At the same\
time, R : ri -P.i±1

..... ...... .
(for i =1 2 ... n -1) and R :. Pn .- P.0 .0 P 1

Consequently,

n n n

E Pi R(Pi) RcE
i=1 i =1 0' =1 .
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to1.-e., the'pOint corresponding to the sum of the position vectors is fixed.
n .., -

It follows that E iii = ,T , Plainly, this result cannot hold fora any
- .

i=1 , .

origin other than the center.

15. -Prove that the bisectors of the inter r antres of a triangle are
concurrent.

Let the vertices of the triangle be/ 0 , A , B . From the solution to,
Number 5, the angle bisectors from A and are given by

(1)

(2)

respectively.

1' = A.-.11-

-2. =

These intersect.

-1p (
IA - BI

( r _ 1.*

\ rz _ 11
1

(X = Y) when

1;. p q) = - - -
fri - - 1-1

SinCe 1 and B are not collinear, this implies:-

whence; =.

P q- -1- -1- ;

lti IA1

q rffi IB Al .

IX I + 1/1 11'

Insert this in (2) to obtain the point of intersection

-(IZI IS I -17
-I

-31

Ill- + ISI -+ IS -.ZI WII MI)
this lies on the angle bisector froM 0 , according to the solution of
Number-3,,as we sought-to prove.

Alternative Solution. Use Number 12. Let the points where tr.f:-

bisectors from 0 , A , B meet the oppoSite sides be R , 1.6 -4"

respectively. From Number 3,

84.9
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and from Number 9(a),

= a (

,Similarly, from (1) and (2),

IL

e.

Al

BP
yr 4 QA IB

Thus, the product .of the ratlos is 1 , and by Ceva*s

bitectors are concurrent.

".

Theorem, the angle

A ; median-ofa tetrahedron is a. ine segment joining any one .vertex to the
centroid of the other three. S w that the medians of the tetrahedron
are concurrent at the centroido its four vertices. Show also that the-

- ,

_segment of median between.tne

lengrth of the median

centroid and vertex is of the total '-

Let-, P/ 0 P2 P3 , P4 be the vertices of the tetrahedron. Let' the

centroid of th:g-face opposite ty-be C1 = 3 (P2 +P3 4-P4) and the

1centroid of the tetrahedron, M v(PI + P2.4- 163 j- P4) The equation

Of the median from P1 is
,

and Clearly, for X

so that 14._lieg

P1

3=

on the median. Since any vertex may be

, the proofis complete.

17. The segment joining the midpoint
midpoint of the opposite edge 'is
vertices- ..2r

designated as

Of apy edge of a tetrahedron to the
bisected by the centroid of thefour

28
850
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.

.

In the notation'of Number.16 let P
1 2P' be one edge or the "tetrahedron,

. . , .. .
. .

. vP
3 4
Pi 'the opposite edge. The segment joining the midpoints of these P.

. ,
edges is gg.ven:by :- -

Clearly X =7.:M

-5 15 ÷
It = (1 - h) 1

2
2. + X 3---!1"-

'i
for X =

2 , which proves the assertion.

18. planes, each containing one edge and bisecting the opposite
edge"of er'tetrahedrOn, are concurrent.'

Such a plane contains the 'corresponding line segment of Number 17, hence,

- also thecentrold of the tetrahedron:

19. Let. it lk be any noncollinear vectors, let or, be'any line in the plane
QAB Alch contains no vertex of the triangle OAB and is parallel to
no side. Let P be the intersection of %, with OB 2.Q the Inters'ectApn
with. QA , and the intersection with AB . If a , 0 , r are given °
by

_ a(33- 3 = ,- it)

D.

show that a$7-=.-1 Conversely, if P 2'Q , R. are poihts satisfying
aPr = -1 then.they are collinear. (Menelgua's Theorem.).

In tne notation of Number. 12, we have .13 = = ,

A

0

= ('l' -vx)7C f.x .

Now, from the colliearity of P, Q , and R (observe that /116

since P- and Q lie on different lines and not, at the intersection),

- Tyis vg- = veit + 11( -r)13
--

Consequently,. from the two representations of

whence,

VT = 1 - - T) =

(



.10

0.

o.

.;-13..-

sr

Now,, observe that,

(2) .
1 + a_a 1

.7 µ = V.=
4

1 -4- T

Insert these expressions for X -and 1,i in (1) to obtain the desired

results: aOr = 1 .

Conversely, if apr = ;let R be the point where FQ inter-.

sects AB Then both - - TO and = (B - r) and
has the same representation in terms of A and4l as R ; therefore,

TC11-4. Products of Two Vectors.

A binary. relation which satisfies t linearity conditions given at the

beginning of the section is called bilinear.- The third type of invariant

bilinear pi.-oduct is the dyadic product A ><T3 which is the linear trA.-

formation represented by the matrix

[

AXBX A.:1-- IIIA

><15 =AB AB A B
Y

z x

YY Yz . e

Ic.

A-B AzBy Az

The dyadic product also has useful: applications.

The right-handed convention fo' the' cross product refers to physical

standards, the .face of a clock,. the fingers of a.hand::iIt may seem primitive

to use sign language or physical devices rather than purely 'mathematical inetho

to prescribe an orientation convention. The axioms of geometry, however, are

In-iFffeCted by reflections in a plane.. The 'two half=spaCes on either -side of a

line have identical:geometrical descriptions. Thus there are no preferred

orientations in geometry and it is impossible to remain entirely within the

abstract frame of mathematics,apd characterize A preferre-d.sidp.o.f.A. plane.

In the same vein .imagine the -problem of conveying thedistinctionbetlfeen

right and left to someone who does not know our convpittions of /anguage (a

child, say) without appePling to physical objects. We do communicategeo-

metrical ideas with physical objects..pictures- and for the purposes of such

communication, and,for applications as-well we adopt conventions by reference -

to standard objects. _



11-4

Should the question` be brought up it may be pointed out that failure of

parity conservation in weak particle interactions is an entirely_ different

Issue. 'It was believed that the laws of physics had mirror symmetry, hence

that the laws of physics,define-no preferred orientation. This would 'tot

preclude the choice of a standard reference object. It has now been found

'that mirror symmetry fails in the quantum domain. Thus it is possible to

an orientation convention without appealing to anything-outside the'law-S

of physics. . ,4e

11-

In a general change of coordinate frame the components of rx P3 do nbt

transform like a vector but like the components of thematrix of the linear

transformation with the skew-symmetric representation

if

-
0 -V V

z y

M = V 0 -V
z x

the z-axis is reversed the matrix of the linear t Lisformation becomes

0 -V -V

J.

Thus VX = 71rx = -Ux*

in the.text.

z y

M V
z

0 V

V -V 0y x
dr

* * * *
V = eV = -U , .11 = V J-U
.Y y y z 7.A.

=
- z

Solutions EXercises'11-4

as we pave seen

1. Verify Properties (5a-d) of the dot product. .

All four properties are direct algebraic consecluences of (3). For an
independent proof of (3) use the first solution of Number 2.

Alternative solution. (without the help of (3)):

*.

.Equation(50f011ows at once from (1) and the commutativity of ordinary
.

multipliation.; - -

Verify Equation .5b by showing- separately,

(xs) x(r s)

+ -6) .1 -6

4E39.
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To rove (

is still

,observe first that if T. 0' the angle between

d

(7%.31) I 1x:1Si:cos

= xlt .
e=x1I1113'.1 cos

If 2%. < O ; than XI has the directiOn oppdsite to t.

betWeen and 7 is n .-, ; hence

(NS) . lit114,1t cog .Z1=

_ )!_t 173.

ot7serve. that the pro-

ton. the line OA

sum of the ro ctions

on the line' see

T.7., prove (i

jection of .11

is simply the

and ZP

e)

q.e.u-e). Thus; if e is the angle

1: and S , 0 be.twecii A _

between t and t t ,
between

and

then

iB + cos = 111 cos e cos 0

Multiply by . 1511:1 to obtiin (ii).

Equation (5c) follows_from = 0 , cos' e

and

and the .angle

?Ad- 1 ( 7Cos (3),

= 1 .
Ineqa.ality (5d) follows from 'cos e [ < 1, .

Obtain the coordinate repregentation (3) of the dot
As suggested in the text, use

11-.12:411312*,-.1t

...1sil 2+A 2+A 2) 2,+B 2).

2" x y z x y- Z. x

$1- 11>

prodect."

Ax324-;.EB --A :12 + (B -"A' 3y y z z

4. ziec , ..-

.
. , ,-

AlterUAtive Solution. Ilse the Properties '(5) of inner. product. as derived'
- ... .

.Independeptlyof (3) in' the alternative solution uthlier 1.
For this purpose let. . i. , p and -1-c be: the .ve ctors ix the : -.-.7

.

. .

directions of the positive xe.-J -; y7 , and .taxis, respectively..-.Thes6
.

.
unit vectors .have the coordinate represbntations 'T'.1=.(120212..);

1.= (041,0). , Trc = (3,6;1) .. Consequently.:-We may _represent 1. a li
as

.
linear_ combinationS of_these unit vectors with the °opponents An .t13.6 e

directions ,of the corresponding axes as coefficients:



= (A A A = A t + A 3.11+ A k ,
.,x , y z

t =4 (Bx.,B;,,Bz) = Bxt +BT+BI.y z
_

From .(1), r-t 3.. t 1 and t = ,T 7-Pc o .
sequently, , taking the dot p\roduct of the two linear combinations and

using (5a) and (5b); we obtain

r -s AB + A'B + A Bxx-yy zz

(a) Show that -the perpendicular projection, of the:vector D on the line
of is the vector

COS .0 I'
A .

The vector IA is called the component of B irr the direction of
.

See Figure 11-41).-

(b) Write )3 in the form SA'.+' and 'show that B.

perpendicnlar to DA The vector BA IS called tite c

B perpeedicular -eo 1

Observe

The case

-2
- - B -A = o

A

= 6 is trivial.

4. Let and lg be noncoilinear vectors. big.mdmize
pret geometrically.

Equi-valently iiin.mize

0-3
2

- N.2t). rg
2= B 2X-(B ) + X. A

perpen-

ent of

and inter-



The minimum occurs at l _2 i.e., when

..,Geometrically, the interptetation of this statement is that the nearest

point on the line OA to 33 is the foot of the perpendicular from B.

upon OA .

5. Prove that the diagonals of a rhombus intersec-Adt right angles.

,
! .

.
.

. .

Represent the rhombus by ,theans.of -the parallelogram law for .R +

B A + B .

4 -

where ir pag .- The diagonals are represented by B + and -

and

+
(it - 1) .

Prove that an- angle inscribed in a semicircle is- a right angle.

to obtalt

+C- = 0 .
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7.1 (a) Show that th
.

-- '44. squteres,of the..s.idesoca parallelogram is
equal to the sum of thp squares of the diagonals.

. '
.

4.

,Represent'the.Parallelogrim by means of a vector as indicated in the
- .

.accompanying figure. The sum of the squares of the sides is

2A2 22

.35 + A

, and the sum of the squares of the diagonals is..

(.s._A)2 13.1.10 2. 0E12 0.3.2 271.3

(b) Show for ak .arbitrary quadrilateral that the sum of the squares of
the sides exceeds the sum of the squares di' the diagonals.by four .

times the square of the distance between the midpoints of the
dieigonals.

Let the successive veetices of the quadrilateral be 0 A , B , C ,
and let the midpoints of the diagonals OB and AC be D and -E ,

.71,- +respectively (see figure). Note that t = and -A- 1(
For the sum of the squares of the sides, obtain

-3.42 0-3
A)2 102 .62

:212. 212 2e -6)

.
. . /

.

for tbe sumyof:-the squares or the diagonals; a = -e ÷ (C - P)2
-2- .2. -2 -... --...''.A.*: B .4- C --2A 'C , an for the square of distancebetween D.

and E.
.. 1...a ..a. 1)2 ire i:,_ _,..52. _,...2 2-A- -6. - 2.3 ..(24.-6.)1.

4
s . d + 4m , as stated .Clearly,



8. Given I= (1,1)1) find vectors .1 t 1 so that '0%1,t) is.a.right-
handed triple of mutually perpendicular vectOrs.-

Take any_vector which is not collinear with 17 say t = (12010) . Set

f = r x ,sfe= x .
(The use of a right-handed coordinate frame iSftaken for granted here.)

9 In.connection with the definition of cross product, why mut a function,
continuous on an interval, which can take on only the-values t 1 be
constant?

If the function took on both values it would have to take on all values

between as well, (Intermediate Value Theorem).

10. Show that .t x 1-3 = X SA , (see Number 3)-.

From Number 3

raPb

x = x + S4)

= rit x 1.3A Ax 73-A

Cr3 7,")- x
A2

- . - . .

-1*.P,reSs the vector =
.products.

B4

,

From Number 3, if neither 13- nor -6

-62

and

;

= - "C -T3 "a) - -6)-S
1.2 B C

in terms of dot and 'cross

eb*

tercpange C and B in this last'resultsand subtract to obtain

11:Lta
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Vote that the expression in brackets i the triple cross product

of.Example 11-4e2so that

IL-1[P x x 6)] .

lee

(b) Compare -11ST6 with Tin (P.B) and (+AB)
C

In the text, given'noncollinear vectors L and 163. we chose a right-
.

handed fundamental set Cr. T Tc. ). with r
0 in the direction of-16-,0' 0'

ti

with in the plane of P and I so.that,the'rotation in the plane
from t 3

O is in the same sense as that from A '-to' 11 , and with.

in terms of A and S B.
; Express Tct 2 T000Icy.peppeniclAsr,tothe plane of Z and 1;

to

(e)s -j = _

1(X2YE --31)Ai

x .

x-)!1

zx

13. Verify (16) for the degenerate cAes ignored in its derivation.

In the derivation of (16) it was assumed that B and C are noncollinear,'
Here we assume

and

B and C are collinear, say C = A.B? Then

?a- X cg x 1-3) =O

-5)1 10-6 = %Ea - = O .

1P14. Prove the result of Example 11-4f.

859
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. The proof is similar in method to the derivation of the .formula for

A

F G

C'
C

0.

the area of a parallelogram by constructing an equivalent rectangle. In

cOnstruct an equivalent rectangular parallelepiped. The three

G

B

fth.1:g, case,

F

lekm

Ot 0 B"

figures sliow how this may be.done. Let tA,37C3 be a7right,-hanted set.
ak..

The 'parallelepiped with initial edges OA , OB. 7. OC is indicated in the

first figure by the vertices 0 , A.r D B .7 C,F,G7E where
= t tr.=t+it . Next, 'introduce

new points by r I t tt.:-T- = va n d Et = I.+ 2r3
s defines a new "parallelepiped.WA..the initial edges O'A OtBt -7

01 .7 where. Q'A is..perpendicular to O'B . Thus, the two faces

TFrt) and FWEIG are rectangular. The two parallelepipeds_ have equal

volume since the prisms OTOACtCF and B*BLOTEF are congruent (the

second is obtained from the first by the translation t) . In the second

figure the. same idea is repeated with thethe projection of WC' on

O'B' and the vertices O' A Bit" s D ere.replaced try 0" A" , B"

13" , where 6" = -61 4- IB etc. The new parallelepiped with initial edges

n-0 A 0 B, 7.0 Ct has the rectangular faces 0"A"D"B" 0"B"Bret

860



(and the faces. opposite). In the third figure, the process is repeated

once again; this time the vertices 0." B" C' are replaced by
Out , Btu., E"', CI" , where Z"t = 3". + -11 ; Int = 13" 4tt etc..

-Tru
being the projection of 0 A on 0 C ._ Now the faces Ot"BmEtuCt"
and OntCurFA-- are Tectangles and we must verify that the third face at

Om. is a -rectani4le, namely, that (..b.A" - Q'T') - (3"1) = 0 . For

this', observe that I"' - 0'" = B" - = B is perpendicular to. both

A "._- 0" and, to 7J1' (which is parallel to 7:71-61) . Since

-Pt - Til = (it" - 0 ") - U itAfollows that -313. is perpendicular to thi

vector. Thus, at this stage we have obtained a rectangular pare e)_epiped
of the same volume as the initial parallelepiped.

The (signed) volume- of a rectangular parallelepiped does obey (17)

since the three vectors are mutually perpendic41ar. In particular,

V = -/-10111A" I IO.ntBttt I 10""C"/ I

(AN, rdeti) . {(Bm Znt) x ("am -6tit)]

where thi sign _3s) determined by the "tiandedness". of the vector.triple.

Now, insert the expression fill A" - ut above and observe, -since rt
is parallel- to ItIT -at't that it is ierpendicular to the cross product;4

Thence,

V = (-)t:T - 04') (i3ett -O") x 'Om)]

= (I> 6" ) [B x - C5"

x (6T tB)1

where is parallel to t.; hence,

=1 [I x at] -='1? tg

where AB is-parallel to ; hence,

v - [13' x -a]

15. Show r x -6) = (r x s3.) -6

= x

= -t (P x "a)

( x "g)

= (I,x
Can you give a general rule for the sign?.

861
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F

Apart from sign each these triple scalar products is the volume of

the paralIelepipe with adjacent edges OA , OC . The'signof the

triple scalar product depends on'the,handedness of the vectors. -The

handedness is reversed tyjan interchange of.any two of the vectors, and

is preserved ,by a cyclic.permutation.

16. Let A + + = r)' Show that .'"

x i3 = -16 x

Interpret this result geometrically to obtain tie law'of sines for
triangles.

'

Set t .--(Z +-17) to o btain / "

and

13
I.nxt=-43x (r SY -B=-xA =AxB

7. (I .+ : x 1 "A* x .

' Since the sum of the vectors is the sum. represents a closed'

polygon, in this case-a triangle,

If a , p , T are the v*rtex

angles of the triangle. as shown

n.the figure then we'have found

rgl sin 7. 0.7111 rt! sin a

hence,

sin .d sin ,:ain'T

1-11 1T3

1;1"

17. Use (16) and Number15 to express

in terms

sin 0 ';

.10

x 35).

of dot products alone.

From Number 15, and fro (16), successively,

CP *ID :Crx f0 x1) )(19

.!- /5 (C x CE ]

= - - 1.3) a) CS .1)

862 40
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.
.

bOrtest_distance.betweeh the straight linesx 'x +

+
2_

of tile line .perpendicular to both?_what is the equation

:

.
.

From the solution to Number 4, since that s ution is independent of the
choice of origin, the shortest distance fro a point to a line is that
along a perpendicular. It follows that the ortest distance i'rom ..r.,

1to 4
2 is along a segment perpendicular to both. If XY is this.

. .
segmentl then

% Sunless IC and B are collinear, in which case the lines are parallel
. and any mutual perpendicUlar yields to the shortest distance). .Insert
the given expressions for 2 and Y into (i) to 4btain'

..(ii) sA = .1".) = x(r. x
To eliminate s and e in (ii) take the dot product with A x B to
obtain

CC tO (tx1)
rA. *112

which gives the desir length.

To.determine the e tion of.the mutual perpendicular, given its
direc,ion,.onl.y one point on the line is needed. Eliminate t and h.

(ii) to determine nd thepoint where the mutual perpendicular
Or ,meets

1
For this-, take the dot,product with. B x (Jk x B) in (ii)

to.obtain s try'

rfs x x 1)3 (-6 -D) x x T3)3

This can be simplified by using the expression (16) for the etriple
product. However, for,thPpresent it is sufficient.to observe that the
mutual perpendicular is b an by

-

cros-s

A

where r is the parameter and

th.r

is fixed- by :(1.1-1)
-
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117)4.

Use cross products to find the equation-of the ray which biaects the
anglg ..between a and 5 . (Compare 'Exercises 11-3, No. )5.) ".

A

To obtain It as a linear combination of- X and set X = XA 03

Let X be any point on the angle
bisector. Since A :and B lie on
oppositr- sides of Mt , and the itngles-

, LAOX .'X0B are equal, we ha-ire

x X X x 1
ICI r

>above to find

11 .
1; 1 1 1 1.

. . . ..

for a = , 1 = X IX1 the result' Of. Number 5 is obtained again:

.* = CA + )
1r1 - iIi/

20. Prove that
X x (73 x C) + B.x x + x t.. x )

Expand out by (16). .

-

21 . Use- (16) to find two different' representatl:ona of (2t x B1 >t (.0 X Mj and

so estab.ltsh an identity of the farm b)1 dt- =IQ' Henda, show
how to express` 'any victor. as a line ar'combpation- of any three vectors
A , B , fOrl which x -a) O . ( Compare Exercises ne3 No: 8.;)

x Vic (6 x fi) = rit (6 x 40 5 - (6 X

a
(P!)< 1)3-6 - [ x B) .

Since the coefficient of t is not (see Number-15) the result. is
established.

22. SOlve. X = A + x .

864



t and 15

Set

are noncollinear then r 1 and x B are noncoplanar.

d It= ea + Vg + dr t B ..
..;-

Take the cross product with li. and "use the .given equation
. , . . _ . .

S X1 _..7 -1 . la -: 1)r ÷ bit { at X I.

.-a x erg --cr

to obtain

where the bracketed Ifexpression is the exPension of x x by '(17 .

Equate coefficients to obtain

=-eta = -6(r t)

whence
.

1 ru B..a = 4-

1 4.-
B2

' . 1 t.S2

-':.. If k and '' areare collinear -and TI i 16

= -A.'S and.

is. trivial), then
-

Take the, dot"product S X 1 to obtain (5. x 502' = O..; hence,

x = 0 ., Thus' 15 and 5r are collinedr, and - = = A .
- r

TC11-5 Vector Calculus and Curves.

The choice of spherical neighborhoods in the definition of limit for a

vector, function is the most "natural" one since the definition is then inde-

pendent of the coordinate ,;frame. Given a coordinate frame, instead .of the.

given characterization of e-neighborhood; we could adopt, say,

4

MaX{ I RX AX 1 I By. AyJ I RZ AZ I <
-The two characterizations are_equivalent for the. purposes of anplysis limits

(36 not depend upon which 4efinition op E-neighborhood is used (compare TC

p. 475) , but the second definition suffers from the inconvenience .that it

,depends Athe coordinate. system: : ''.::- -.-r --,

'-' - The. Solution (23) to differential
-

equation (22) of Ekample 11-55. is

.. ..-..
, .--

act{ially the equation of a ray,' not an entire. straight:line since



V .

This comes about because the equation is singular whAtr., 'Os) = ', or 2 =I
,The solution is actually' the ray with initial point 4:A in the dtredtion of. h

A .

_ .
,.. ..

-r.

.

Solutions Exerciese 11-5
. Prove that. Definition 11-5 and Equation (3) are equivalent definitions oflimit for a vector function.'

From Definition 3-2, Equation (3) holds if and only if.for every positive;... . .

e there exists a S. such that 1-itc t y - ka < g 'whetever...

0 <- it- - t. .j <5 -

prove ProPertieS (4) .and (5) for. the limits of vector functiond.

. . -Except for-the distinction between vector and scalar functioA1 the.
14,

proofs -.are virtually identical to the proort. of the corresponding
limit theorems for scalar functions. Note'in .both cases as in .
CT-lap-ter; 3, that _tile.xistence of the ,limits. '-the right.. irtiplies the
71stence' of tbe .on the left..46

:- (b) Use,ithe 4a.e sults of Part (a) to.prOVe Prope7tY (6) .

ET,TA1 .-be .the fundamental set of ,coorditiate vectOrs, then
-.4(t) = .f(t)t g(t)3÷-11(t)1

--
hence, bye (4).

lim ;:(t) = lim Cf(t)-i'] + lim ret)-31 + lir [h(t)k) .t-t t-t t-t0 0 0 t-to

t

Now from (5), and- lim = r- for any constant vector,
t-t0

lim f(t)t = lim f(t)] r-tani
t -t t-t t0 0-

4

= [lim f ( t

I

with. . results for the other . -erns of --.the.spm. us if

1. I



lim f(t) = lim g(t);= b ,- :11( t) c
t".to t7to telt

Or

then lima- t(t) 4 'Nyhere ,c) .

. t.;t

To complete the .proof it .is necessary to show that the existence

of the limit of f(t) implies the existence of the 1imits of the com-

ponent !unctions It ii.only necessary to observe that if

[Vr(t) - 14f(t) .- 12 [g(t)-a]? [h(t) -7s1]2'<e

if(t). 7 a 14f(t) - [g(t) [h(t) - a] <

Prove Properties (7.) and (8).

,
Apply the result. of Part (b) to the -coordinate representation of

u(t) V(i) ;and. 11(1;)

. .

Prove the vector differentiation .formulas

For the proof .of Formula (10) note that

t "P( to) f(to) g(t) - a(to)m) h(t)"-
t -.t - t t=t0 -tor

0

and pass to as t approaches t0 with the aicrof (6).
For the prbofs of (11) - '(±3).-, apply (10) to the coordinate repre-

,- sentationsi and use the scalar formula for the derivative of a product.

Similarly, for the proof of (14) apply the scalar chain rule to the

coordinate representation of the composition. 11"'

4. Consider the function 0
Differentiate

(a) 0(t)
(b)

SOW

) 0(t)2

If(t) where "E.' is differentiab3:e.
,

867
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set 0(t) =' `.(t) f(t)

ft(t)

.jt(t)1.

(b) t1
f(t)

0(t)2- INt)13

(c) DtEI(t) (t)] = att(t) - 1,(t) .

4

5. Obtain the formula .for the ardiength. of a plane-curve give--n in polar
coordinates by p f(e) .

Use 8 as a paiameter and set

x= p cos e, y= p sin'.0

From tt(e) e - p 6in e e p cos e) obtain
do

de 2 de .

e) Ide = 8 t2
--I- 22) de

e de

2

PO 0

p is.taken as the parameter, then.

.1"(P) = "(cOse - peo sin , sin e f. -p@= cps

2 de 2
4- P.( dPdp

Sketc# each of :the follOwing curves, give the points at which the .tangent
vecto doeanit exist, and represent the curve in -terms of arcleng-tli -where
posdible. (If no z- coordinate is given., restrict the locus to the
x, y-,plane) .

-

=--.a÷b sint
(a) y = c d .cos -t <t < arc

Mete are several cases. (1) If b- apd d are both non-zero,

b d the curve is the ellipse

with center at ( a, c) and semi -axes I b 1 and I d I . The tangent

always exists. The, arclength s is given by a so-called elliptic. .0"



integral and is not an elementary function-of-t ; consequently

and y- cannot be expressed as elementary functions of s . (ii) If
b = d # 0 the curve is a circle of radtus_ibr. The tangent'always .

exists. Since Illt(t)1 = IbI the arclength'is given, by

s = ibl(t - t0) .: (tit) Ifjust one of b. and 'd is non-zero;

then the curve isia segment; if .b14.-0 d = 0

(?ciy ) : y c -ibi < x ,<a b ) . The tangent fails to

exist at t = (n integral); the :end. points of the

segment. .(iv) If .b = d = 0 , the locus is the single point (a, c)

Since tt(t) = 0 fOk. all:.t-, no.tangent is defined, which is as it

should be. Note that the restriction that the zeros of tv be

isolated eliminates this singular case.'

(b) The -cycloid,
ix =,a(t - in t)

ly all - cos t)

Show that this curve is the locus-of a point on a circle that rolls.
on a straight line wIth'out slipping..

0 <t 270 .

'Since -2"(t).= a(1 - t) , the tangent tails to exist

when-- = 2.121ra .(n integr 1), where 1!(t) = At these points

t. left -sided tangent is (0,-1) , and the right-sided tangent

001) thuS thepOints are OuSps. From .

IPt(t)I = al/2(1 - ) = 1

It follows that

s = 2a sin td-c = 411('1 - cos-e
t

0

Consequently,
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t =. 2 sre.ccis

arccos [2(1 - 1]..

arcsin -
a. "

0 <..s <8a". The parametric the1
,terms of arciength are then

s
',=:2a arccos .(1 .- .

-2
.y = (8as,- s,) .

Vlas s2

TO demonstrate the geometrical :characterization of the cycloid

consider the path traced out by a point P on a circle of radius a

whichrolls--along the -axis. Let C be the .center of the circle

and locate : P with respect to.the,center'. The center moves in

straight-line motion along the line y = a . As P rotates through

the angle t with respect to the. center,- the length to along the',

circle is rolled out on the x -axis. Consequently, if P is initially

-at the origin.; after the rotation t with respect to C we have

(at,a) and 'P - thr.= -a(cos t sit* , which yields the given

parametric representation immediately.

A( ) The Cornu spiral,

x

y

= cos u2 u
.. 0

0
sin u2 du .



This fascinating curve plaYs a role in the theory of diffraction

of light (see-Chapte r 15). It has been much studied, but here the

available tooli permit a description of only the grosser. features.

Since. r4-t) = (cos -e2 .2 sin -t2). 2 we have .1rJ(t)1 =:1 for all t

sO that t is the Eirclength parameter, and..the tangent is defined

for all t .. Since 2q-t).= 4.(t) ., symmetry with respect to the

-origin obtains, so_we need consider only positive t . tthserve now
I .

that- y 'has maxima at t = A2n -.1)y , minima at t = 141;7 ;

fuFtheimore it is easy to see that the maxima are decreasing and the

'minima increasing.. For-example the, difference between two successive
. A.
tminiila of y is

2n+2

2-niv

) it
sin u du = Fa

-1-2n +2) 7r
sin v

dv
2 ,r;

where the substitution v u2 is employed. Now,

= in v dv ;s-
(2n4-2)y

2'nir "J(2n-.1-1)y 4

1 Lin sin -w=
0 iw nir

_sin w
..d.q:'

0 ,44, + (221,4-4)y



.

where, in the first integral w_e have .put = w 2rar "' in the

second w = .v + (2n 4- 1.)3r . Hence,. 7-

.4
2f0 [ w ( 2n + 1)7r

1 -1 1
sin w dw

It is also clear for the difZerence tetween a minimum and the next

maximum that

f1(2n4-1Y/r

.

2 )4Wu du V(2n -I- 1)7r. - <
ig:E7T7E 1 + 11107

hence, that-the limit of the difference is zero. By the Nested.
Interval Principal (Section A1-5), y has a almit as t approaqits

ar" results hold for x - (By the calculus of fUnctions. of

47complex -variable,. it can be shown that slim x Jim y = 17-A A.
t-co t--00

g : t y have graphs asThus the functions f : t

depicted.

x = f(ty

I
I..

/ .

1.

g(t).

t

f t g : t t sin u2 du
0

The-.e.tWo graphslety then be used together to sketch out the geheral

spiral charact&of the curve. Observefurtber, from

. .
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C

Adty) //:S21.
2 dt'dx' dtdx

2
2t

cos-'t- 13

So that the curve. -*is convex between- successive extrema of x

flexed, upward _between. a .minimum and the ensiling maxiaum, :downward

:between a maximum and .the ensuing minimum..

The cardioid$
x = cos e (1 8)

1,y e. (1 7 cos e)

or$ in. polai.. coordinates, p-= 1 cos 8 .

-Here 21 (t) C.- (-sin sin 2e 1 cos

w-n < e < lc $ only e = 0 yields .

a null value of r2 . At e = o 1

odd- and the second component

first component of " (t) is

there is a cusp; i.e., since the

T

41111even, the tangent reverses w

direction, *Ilse the result of

Number 5 to obtain

Jr 0

(o < e arc)

-coos 2e) hence for

ir
e

.12(1 7 cos 8) -de

.1$ 0 10'

I= 4(1 = cos ,

- cos . e)
2

+ sing e ,de

S

Now eXprets. 8 in terms, of

e 2 .arccos (-1 ) -= arccos .[2(1 = 1]

=1 sin E. de -4

(o <8 < 27r ) .

2
arccos El - 'S ir]



In terths,of the parametr.c equations become

2
x = s(1 _ po,_ . + 444

. 4 - s r__., s,13/2

-3r 2 %L"j- 8-jj1 -

(e) x
1 + t7.

1 t- .-.

Y = + t2.

Identify this curve.. .

(f)

s2 2
ObSetive that x + y .= I 0. .Th is- is -the -emit circle with the

-pa,ngent ofa half the central angle as parameter. The point (0,-1)

is not covered except in. .the limit as t approaches co -. (Compare
2

Section 10-3, F4:armula (9)). FrOm (t)- =
2

2
-

- t2, -2t)
(1 t )

(that the curve is .a circle, is visible at this point; for

t(t) -1-4.(t) = 0 , hence, Dr?(t) = 0 and (,(t) is'Const ant),

obtain 11(--6`) I = 2 so that the tangent al.qays exists. For-
]: t2

the arclength, obtain

ts 1-: l'il(t)Idt =.2 arctan t ;
.17. 0-

whence, x = sin, s 7. y.= cos s :

The .three- dimensional helix,

x = a.cbs t

y = a sin t

. .
-

Here ..itt(t) =. (-a. sin t , a. cos t , 1)- and , 'where.

c

_ . .

= .a2 73: . Thus the tangent always exists and s = ct .

Consequently,



.(g) The conical helix,
v..

e

From V (t) cos t .- at- sin t, :a 'sin at cos t 11). ,

obtain ) I t -t I .

r.

g

--F 1). ; whence

a .t2 ' 27± c

where c = a2 + 1 .

. -



L
b

7. Show how, to define the integral i4(t)dt by the method of Riemann
a

sums: Prdire that this is equivalent to integrating component .by com-
ponent.

Let c = osti.....Itn) be any partition of

number, in iltk_iltk] for k = 1 , ,

We say that is
it(t)dt

a .

if

'that. i < e

n

EIt(Tk)(tk tk-1
1c=1 ,

the Integral-of r -over .[a,b]. and 'write

for every positive - c ; there 'exists a B > 0. such

alb] and let 1-k be any

n . Form the sum ,

.
whenever Ar(.cr) < t,s,iiidependently of the pal-ticular-

choice of partition or the numbers

. Now set. .ii(t) = (f() g(t) b.(t)) and if the integrals of the

r

components exist, denote them by. K , A , A 2 respectively. First

assume that the integral of I: exists.. Then let and e. be.defined

-as. aSove. ..It follows that, if thern

(Tk)Ci 7
kirel

(Sx Ix)2
Sy

-I
.Ab

< Is II.< c .

Consequently, thqLintegral 'of f' exists anctis

argument applies to the other components.

Conversely .if:_the component functions

then given 0.10 .e it is possible to find .a

ISx - Ax I < e whenever v( a ) where

2
+ (S I )z

equal to Ix . The same.

=4 separately integrable,

such that

_has the form ,

5x

Sx

For the corresponding expressions for, the other components we have,

similarly,



I

A 1 < e whenever. .v(cr ) <.8y"
. .

Sz - Az < e whenever v ( ) < Sz .

11-5

Now, take 5 = Min[Ex y,6 05z ) . Let a be any partition with v(a) < 6 ,

take a = a = a = a' and also choose the, same intermediate points forx y ..z
.

the three sums, namely, -1. = E'
k'

= E' = rk . Then,k,x l y k, z
.

= - A )2 #.(S - A )2 + (S '1-x x y y z z
.7. < e ;

where e may be any positive number. Thus is integrable and has
the integrhl A = (Ax,AT' Az) .

' . Note that integration by components immediately yields the vector
counterparts of Theorems 6-4b,- c, the Fundamental Theorem and the Sub-

.-, stitution Rule.

- 1

. What 'is the unique continuously differentsolutl.agof.: (t): =with the initial condition
(0) = C T

Either employ the last'remerkin the solution tb-Number 7 or.integrate
component by component to obtain

. ,

1:(t)
Q

-
,,. iv.9.: (a) Lit the parametric repreSentation of a curve- .be giverri,n the ,-fo

2 = Vs"): -where7. s is arclength and I: is three time; diff
,:- ce

ds'
..

-tiable. From i It I , -......,..1 -,' it follows from EXamplel175a:that ;...
t _:11. - at , ' -.' I.ci -is perpendi-cu.lar-to 1- . If., r .o the unit vector_ds A

. -ds. ,.' .
...- .... dt 1 t t-
. 4:, 33. . 12-1 exists ::. . The vector - Tr is Called.' the .pr pie-- I. ds ,ds r . _ , . . ..
-,-normal to the -curve*. ASsynni rtg :that IT exists for y. provethat the curve is planger i.f- and only' if

.

-dd

ff =s

.

-0

.
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If t X ds = 0 , then

cfs(t x8) ds
dt= X + ) ( as"

tt X 11
" cTs- o .

Aca- de.

d
Co;:ksequerrtly, for the so=called binorMal = t K;$ , we have = 0as

':and ' is a constant unit vector. Thus

.d2 t) = 0 ;ds
.

whence. , where k rtrs constant; hence, (X - kb) - b = 0

It /'ollows from Examp]p 11-1+c that, X liets in a plane perpendicular,

to Where kt corresponds. to the fcliat. of the perpendicular from

origin to the plane and jkl i the'-length of that perpendicUldr.

Conversely, if the curve is planar, nd is .a unit vector

.pei-Pendi5r to the.planszLtheia

where. 'k is constant. Cons evently,

= -0

at
ds 11)

4n = 0 .

Since, ..11. is perpendicular to bOth-- t and

=

Now differentiate with..respeto and use n x = to obta
the desired result.

Mcpress. this cp*Iition in terms of derivatives of 2' .

.

With to dezote, differentiation with respect to

,

-.4 11.1.1

use tip t r
'it? I 'till

878
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where the last step uses the result of Number 4(0. Thus, the
_condition becomes, on multiplication by Itt g

21 x [211.1. -
12

where the second vector in the cross-product is the component oft
TT TT perpendicular to 1" .

,.e 10. We have restric ourselves to .parameltrizations of curves X = 14(t) ,.1 -4-12%< t < b which the derivative rf- is continuous with isolated
-zeros, if' any. . :In general, we say that t:' the tan4ient.to the curve e,
X0 if there is a..ria.rametriza.tion Xo_ = t(to) ,- such that

A

11-5

t urn 77(t) = .lim
0

where
'Mb

v(t). -
- x(to) r(t) - r

-
Show:tha't this definition ig_clilies -the text case

,

-

t
f?*-(tY1,.=,

lim 11(9 . lim u(
. o o

)

'property;of' .pioductst omits

=
t) Tr(t )

. to

I

.

. .
- (ix) e ext.we ha defined parametrizations Te.= 1(T). and
SrL , X -=---x%t as egutvilent if it(0(-0) = .76,(-r) .::where 0 is defined

on the domain of has arange in the domain o , increasing,
and has-s piecewise continuous derivative. the tangept

at X0 as defined in Part (a) is the same -FOr all -equivalent
- . -..Trarametrizations.

t(t) It(t ).t t0O 341'
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We .shall say that a point t0 is a regular point of the parametri-

zation 2 = 1:(t) if V is continuous at t0 and -'itt(to)
crtherwise t will be called a singular poitnt. We have restricted

ourselves to parametrization for which the aingular points are.
.

isolated.. Nov, set = 0(t) where t and s. tit,re equivalent.

Will the possible exception Ca* isolated points we have Ot con-

tinuous and Ot(-r) 0- . 1513y the Chain Rule

(1) 111(T) '= 951(T)1"(t)

except perhaps at isolated points. since. 0(t) is increasing, an

01(T). # 0 in (l) we have 0, (1-) >'0_ k hence, for the tangent,

4 t(1-) Ot(T)Vt) T(t)

11:1(T)i I0' (T) I lr(t) I1 PP(t)1

a
Now ilet. TO be one 'of the isolated points in questicln. If the

cur.ve has a tangent :1-C = T
0
). = "(t- ) - .""then the' right-and-left-.

Q
sided limits .given above exist. Furthermore, -since .0. is increasing,

if 1- -r then 0(-r) 0*(.r0 and -I-

1

where T is the mean value given by the LaW of the Mean. Since T
0

is isdlated zero or discontinuity point of 0' , there is a deletedIt
V

neighborhood of To 7 which contains no zeros of 0' . If is -I
restricted to t neighborhood; then 0* -r) 0 ; hence (7r-) > 0 ..

because 0 is 1 r ea Consequently, for/ the vector function

-ft given by



..

_Consequently the right- and left -sided limits for 11M(T) at Tb.3 are
,!/

equal'to those of 1qt) at t
0 and since the latter twoltraits are

equal, we conclude that t is. the same for both pvametrizations.

. (c) If, in the definition of equivalent parameters 0. is replaced:by a
decreasing funct fon, we say that t and T are "contravalent"
parameters,' juSt to haVe a word for it. Show that contravalent
parametrization orient the carve .in opposite senses; that is, it t
is the tangent for the parametrization It = 14(t) then -t, . is the
tangent for X = q(T) = l'I'(O(T)) . '

Observe that,if t and T are contravalent parameters,-then t
and -T are equivalent; i.e., for a = -T and JD : a 11(-a) ,

we have

where

r a.

-i--(4ft = -Pt

0(-a) is an increasing,.function...-Consequently,

DC cr) P( ao)

-froth-which the

- 0a T TO

conclusion "1 immediate..
.1/4.

144-

-

U. A possible vector, generalizatia of R011e s Theorem is:

differentable on a <: t <: b and let' 14(a). = -Nb) = '40)

point t , a <: t <b

The statement is.false..

curve, for example, the.

Let .
It :be

then .there is a

at which. 1"(70 - Prove or disprove,

The proposition,. fails for any 'regular closed

circle (1b.cemple .11-5e) -

. -
for 0 <: 6 <`21r .See-MisCellaheouS XerciseS, Niamber 10 for a correct
generalization.

fit.2.; For 3c" = t) where has a- Gontinuous .derivative on [a,b] -'prove;
that the lengths P( a) of Inscribed pOlSrgons given b5"7--(2.8) have a least, "upper, bound and that this upper _bound is the arclength L given by (19)...r

9 7 I vNote first that the Integral L :exists _since 4 r.t k t),1 continuous.-
Furthermore L : can' be approximated ,within any tolerance by P.( a) -;.con-7

sequently, ...if L is _an'. upper bound it:must be least. Now, %let
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a = (t0,t1,....,tn) be any partition of -[e-,b] and let

refinement of. a . Let fu
0'
u p ) where u

0
t

'
up t be.

the partition of the interval [tk_i,tk] by points. of -r . :,.Use the
.

be any

inequality (6) of Section 11-4 for the absolute value of a sum., to obtain

It(tk) - t(tk..1)1 = Itt(u ) - t(u )1 -I- Elqup-1) - 14(u- ) ]p-2

+ Pf(u1) - t(ucpii

< li( up) - 7,(up_i) + - t( ui).2)

+ + - r(u0) I

Sum over k to obtain is( a) < P(u) . Thus the arclength P( a) of the

inscribed polygon cannot exceed that obtained by any refinement of the

partition. Since by making the norm of .the partition fine enough weican

ensure IL - P(u) < c , hence, P(u) < L + E , it follows that

P( a) < L + c

for all positive and we conclude P(a) < .

A13. Complete the proof that the arclength
lengths of inscribed polygons (18) by

-Let 11(t) (F(t),G(t),H(t))
--Partition a = ft

0'
t
l'

...,tn ] of

Etk:

P (E
L 2

-1F )k
k=1

'Under the stated condition,

P 4( ) 2

C

integral (19) is the' limit of the
establishing the following lemma.,

be continuous on ta,b] For each
fa,b] and each choice,of

consider

v( a)-0

2.+
Ir

(t
k.

-4" G(t)2 +H(t)2 dt .

' /k '

. .

From the .definition of Riemann integral, the result'is established when'

= T1k = In order to show that it makes 'ho difference if these

number's are used independently, take use of the. property proved in

Theorem .A7-2.1 4. 0 is continuous on the .closed interval Ea,b) the.n

for Fim5- positive c , there is a such that 10(u) - 0(v) I < -E. for

any u- , v Ea,b3 sastring v I :<'6 . Given e , if 52 ,

83 . are such error controfs for F ; G , respectively, then;

.45 = min. (5,6 , ) may be used fOr:all three. Now we restrict ourselvea

to partitions .a fOr which .v( a) < 5 . Compare P with

882..
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k=1

2.+ G(tk)2 + )
2

tk-i)

11-

Observe from the inequality for the difference ,of absolute values, (7) of
Section 11-4, and frtam

.

I (a,b,c)I a< a10,0) I.+ 1(01b,0)1 I(0,0,c)

that.

14(Ek) )2
+ H(tid2 h(t )2 +

- ,

2
li(tk)

2

-chthk? F(gk) J2 [G(Tik) G(gidi 4..[H(tk) - 11(t072

.< Gak) I 1Hqk) - H(Ek)I

< 26- .

Consequently,

- QI. < E 2e(tk -

k =1

For a sufficiently fine subdivision; hen, _ the sum -P can be brought
within any specified.toleranCe of Et Ri sum.- At the. same time the

be made to,approximatet e integral in the same way.'
It follows that the integral is..the limit of the generalized sums P

Rieman sum can

r
TC11-6.z- Curves in the Plane.

In Subsection (t) we return. to issues raised in Chapters- 1 and 6 and give
a description of area which is sufficiently general-to cover. most "cases of
.practical, interest. In (ii) we introduce the Co'n.cept of 'curvalt ur" which is
not only geometrically interesting but is 'useful in many applications including
the dynamics of a particle (Chapter.".12)... In (iii) we make. use of the idea of

curvature to,develope. the. theory of- the -evolute and involute. These special
curves appear again in Chapter 15. --In" (iv) welitilize :the- available insights

. . - .
.

and ter-Imiques to derive one or the principle theoretical results about.piane
curves, that a plane curve is- cliar-Eerized geometrically by its curve. tUre
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Note that the area'integral_(3)wil16uspp777-be improper becauseA00of:juip

discontinuities in 0' ,.but this,areaternb essential. difficulty (see Exercises

10-6b, No.18): For this integral given in the FbrM (2) we may extend .tne

funcions 0 and lir to periodic functions with period p - a.; in that case

the specific ends of integration are irrelevant so long1fs their difference is'
.

the period (compare the solution of Exercises 11-6, No_., 4).

We justify theyormula (3) for area only for curves 'for which the domain

of 0 : x can be subdivided into intervals on which O.. is strongly

monotone or constant. Such a stbdivision may not exist even for smooth,

curves. Nonetheless, the class of curves for which (3) is,jiastifiedin the,

text is sufficiently general to motivate the ad ption of (3) as the definition

of area forthe piecewise smooth curves we con ider. Since our purpose is

the motivation of this definition Is content to give an intuitivegeometri-

cal-argument for (3). Still:, the argument is'essentislly complete; all that

itIacks is a precidely described-labeling procedure -to insure that nothing

has been left out in the step-by-stems agproach of the text.

'In contrast, note-that the curvature K is not invariant under reflec-

tion but changes sign. :if a_. coordinate axis is 'reversedi..tDe positive sense

of-rotation (from the xaxiStO the y-axiS) is then reversed and 11". as

defined by (9> becomes the right- pointing normal.

In the definition of the\.osenIaing circleaS the liMit of the -circle

through three points of the curve,If.the points are collinear let the

approximating "circle" .be the straight line thriSugh the points as is the usual

convention.

In Example .11.6h, the existence of the derivatives of *K. is tacitly

assumed. SimilFirly in Subsection (iv)Weassume that t' has two continuous

deriVatives.

Observe In Formula (23),0Ince the values of s .W111 include Zero if s

is measured from a point. on .the curve, that there is no lossii generality in

assmning zero is in the parameter interval. The only effect of using a

different end of integration is a:change in the constant a -.



Solutions Exercises 11-6

1. Verify tklatthe following curves are simple.
(a) The graph of .a continuous function.

(b)

11 -6

Take x as the parameter for the graph of f x y ; namely
2 = (x,f(x)) . For xj4 xo , then (xl,f(x1)) # (x2,f(x2)) since
the abscissas are distinct.

Let the pa etric.representation of the circle be
14(0) .(a.c s.,a sin .8) .2 a< e'<:.27c... The circle is closed since
1*(0).=-r(27) -Divide' the cireie.into.the semicirclei given by .

0 < 19'<-7r and 7c-.< 9 <:21T . The semicircles do- not intersect, since,
except for the endpoint 9 , points of the first semicirCle lie..
above the -axis., .and1 except for the endpoint 9 = w-,those of the
second semicircle lie below. Since the endpoints (1,0) and (-1,0)
of the.respective semicircles-Are distinct,,the demicirclei.do not
intersect each other. Next we consider the upper semitircle. It
-cannot intersect itself since the abaciSsa cos 8 is a decreasing
function of. 9 . Che same holds'for the lower semicircle
cos 61 increasing.

) A cardioid (Exercises 11-5, No. 6(d).1.'

th .

As for.the circle above, divide.the-cardioid into the non-overlapping
"semicardioids" given by 0-< 9 < 7c and it < e 5:2A . Use the polar
representation--p 1 -.ads 9 . The, result follows since 0* is an 4/::-

increasing function of on the upper ;iemicardiold, decreasing on
the lower.

.
.

.

A(id) .The Co rnu spiral_ (Exercises 11-!5., No. 6(

Set
t

x = f(t) = cos u du , y =.g(t) sin
0

du .
0 .

Observe by the argument of Exercises 11-5, Number 6(c) that g(0) ,

the minimum.value of y for t > 0 and the:maxiraum'for t < O
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separates the ordl.nates, of mthe two '.halves of the 'curve: Hence we

may confine our attention to 'the domain of nonnegetive t . At :any
given point *a> 0- of thparaMete;interval .let a be the angle

of inclination of the tangent (f l(a),g7 (a)) . Now rotate:the

coordinate..,5ceE tiirough the, angle 9 so that the tangent becomes

horizontal'. In the rotated axis system, the coordinates `become

whence

t = x cos 0 + y sin e

n = -z sin e, + y cos e

t
0(t) r cos

JCS

t
j sin (u

0
Ti = 11/(t)

-9)du

Now; by the same argument as that of cercises 11-5, Number. ac) ,

_Iv( a) is a local extremum for Ti and for t > a, is never reached

again. Thus f(b)- a) for-any. a and b with b > Ei-">"0

Hence the curve cannot .intersect itself for t

A 4

2. Obtain a parame tric.-repres-entittion for the boundary of the, .standard*--,
region -under the graph of f oriented in positive sense indicated

'J.gure 11-6c.
-- -

Take t = 0 at (b,f(b)) , and arclength as the parameter on the. straight
.

segment's, and t = b r as the parameter on the graph of. f., where k"

'ii constant ..e.

(b -t ,. f(b -t)) , for- 0 _<t < b -a

(a., b.-.a+f(a) -.t) , for b -a <.t <_b -a tf(a) ..

(t,f(a)'-b+2a, 0) ,for. b-a:+f(a) < t <2(b-a ) +f(a).

(b,t.-2(b.-a) -f(a)) ,for 2(b -a) +f(a) .< t <2 (b,-.a)+f(6)+f(b).

r(t) =

Show how the expression for the signed area Of a standard region (1),
taken in the directiOn!of increasing t , changes if tie orientation is

. . negative.

The expression -(1) is obtained for positive parametrizations. If 1' is

a parameter which -yieltis a negative. orientation, then t , where t

yieldp a positive orientation (compare Exercises 11-5, No. 10(c)). Con-

sequen-tljy, r
0 . ,

= -1 T1 = -to the integral



+ ti

- AV( t) 0' ( t) dt

dtwhere 717-r = 1 .

d-r

Now, in the direction o increasing T.

Jip

13.-6

1
I = .1r...(-1-)c/P(r)d-r 1,

air

where we have used Ar(71- and 0 (71* ) D 0(-1r) (-T) Recall
that = I is the area _assoCiateewith the positive orientation of curve;
the area .41.::shere .Co.i.:respondirto the negative orientation, that is,
A =. -I

A = -J 17(T)it(T)11
. TO'

Ths, it is shown that the form of (1) is independent of the parametriy-
tion.

. .

In the derivation of (1) it was supposed that -the -part. of the: boundary
,which.is the graph of thegiven function corresponds to a subinterval ;
of the domain of parametrization. Show forny arc of a simple closed
curve.how to Modify the parametrization so -that' the arc corresponds to
a _subinterval of the domain.

Extend. .0 -and lir to periodic functions with.-"period - a and choose
for the.parameter -interval' any interval of length b - a for which the
-range-of .7t.,:includes the Arc, e.g.,_ if the arc is defined by 0.
VC; ;::t. ftb,(33 U [a,t]:) . where a .< -t1 G to < -, set 'T t

'for t- a
'

[-t-
0 = + + f3 for t [a, t1 . Then. the arc is

given..by._ X = r(T) . f'or .t, <T < as and X = .4- a - f3):, for
< T < + -13 + a.

Find the area

(a) Under.one arch of the cycloid: acercides 11 -5,- No. 6(b)1.

/MD
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From (1), with 0( ) a a(t - sin t) and * = a(1 cos t)

A = a .-22n 1 -cos t)2 dt
0

-where the sign corresponds to the negative orientation of the

standard region. 6oritaquently

A.. =
2

(1. - 2 cos, t cos2 t;) dt.

(b) of the interior of the- carclioid. Exercises 11 -5; No. 6(d) )

From (6),

A = (1 - dos 6
2.7r

)2 d
0

and from the result of Part (a),

A =
2

6. Sketch the curve glVen in polar coordinates by o = a cos e - b ,
a > b > 0 , for. 0 < 8 < 2n . Use (5) or an equivalent formula -tco
compute the "area." The result is not the area in the usual..sense.......
Check_ the derivation of (5). to .see whit the-forimaa actually gives.

.

This curve is called the limagon.
The sketch depicts the case a: =

A blind application of (6) yields-
,

A b + 2ab cos 6+:2 cos 2e) de1121r; 2 --a2 a2

0

= 5-
2

(2b2 -1--a2)
r

The llmagon is not a simple closed

curve but consists of two simple closed

curves, both oriented posrl_vely. Since the region enclosed-by the outer

loop consists of .the region enclosed by the inner leOp .(indicated by '.1
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In the figure) 'and a region exterior to the inner loop 4indicated by 2),

the area within the ,inner loop 11.11S, been counted twice. Thus

A 1. 2AI -f7.A2 where the '-indices correspond to the regions 'In the figure.
,

For the following

(a)

es what is the "area" as computed by (5)?

Generalize as far as you can.

\ -

Divide up-the figure into nonoverlapping.subregfons as indicated by the

labels in-each diagram. Let A
i

denote" the area of subregion i . Count.

the niber of times-the*subregion is, enclosed with, sign taken into accounta--7.

(a) Al - A2 Cc) 2A1 2A
2 + A3

A
2 (d) -.A

1
+ 2A

2

There Ore more general situations of interest, but here we show haw to

treat the case of finitely many selfintersections only. Consider a

-closed cUrve given by 2 = f(t) for a < t < b with- it(a) =

selfintersection, with the possible exception of t = a and t = b

occurs when -14(t) = for T t . =y, assumption there are only

finitely many pairs (tT3 hence .fin ely many.numbera t. for which

this happens: Arrange.these number in increasing sequence,

a= to <t1,,< . < .tn = b .

.FOr each t this sequence- the e is at least one j-
J.

= Z( ) . Form all su h. pairs flyi with i < j. consider



min(j and
* *

) be a pair for which this minimum is.

achieved. The clos subcurve 2 (t' for * < t * is simple,

for if a self-intersection ih(ti) = /t(til arose for t c (t .1(:It
J
*3-

*
and 0 <.j

*
-

* .

then j -
4

Could not_be.the minimum. Now
take ac-count of the signed area within this- subcurve-and delete the sutz-A
curve the whole. .What-remains' is still a closed curve but the

numben..of self-intersectionS has been -reduced by at least one. Let the
residual curve now begiven the conti4ous parametrization X = q(u)

where

lk ) =
I(u) Or a < u < t

i

1V.(u 44 t *,- t *)-4 ,for ,t <AC< - t*

The reduction process- may'not be applied repeatedly.o-yielda.decom.--,

. position o:.6e OxiginaI curve into simple cloaed-curves. intgi#41

.then tb*-.siUm-of;the'digned area for these ..4 ! '

It is far more complicated to keep track analytically 'of thenuMber
,

of'.timess. the non- overlapping regions are covered.

Obtain the expre-ssion for the-curvature for a curve given inpolar
cocirdipatEs-by. t:)= f(e)

- Take a as the'parameter in a cartesian representation:

Insprt the expressions

and

= p cos e.

y = p sin e. .

cos 9 - p sin e

'e' =

(la) to obtain

Te cos e sot

='$)"-sta e 2pt

sin e - p cos

cos e - p sin 9



9. Find the curvature at each point of the -following curves given it
cartesian, polar or parametric representation as the' notation suggests--

r

a) y = x .

b)
2

2- 2
a b

2

(1 4x2)3/2

Use the parametric representation

`x = a cos @

1 y b _sin 8

and apply (11)2'

K ab

2-
("c) = .a2- cos 28 ;

(a2 sin2 cos2 e)3l2

ab

(`2 2 2 342-a -i-b -x -y)

4

-,2

The. curve is a iemniscate. Apply the result of Number 8, ras-follows-
Obtain the first-two derivatives with respect to e

namely

7 1 ''2 1 2=. y cos 2e ;

p0.1 = -a2: sin 28.

.e

AP" + (A *)2 - a2cos n = -2p

89r



(

4
1)2 ,2

2 /-1

0

Enter (ii) to obtain

- s4
PP" = -P 7 2

Enter and (iv) in the result of!-Iqumber 8 to obtain

34cszTET--.219
.a a

(q) the cycloid (Exercises 11-5 No. 6(b)).

"Apply. (11) to the-given parametric equations.
.

1

4
) the Cornu spiral (Exercises. 11-5j. No. 6( )).

)

f
Apply'(fl) K

the cardioid (Exercises 1150.No. 6

Apply the result c.Number 8.

x a cosh e

y a s,in _e



M -- This.-curve is a-an arc of a parabola y = x as axis 8i
symmetry. Apply (11):to obtain

'Near
?.

:Alternatively,
?p,fOoSt

1

.

el imirote e obtain the cartesian Torii

-17c v/FL

implicitly with respect to to-obtainand differentiate

and

whence by (12)

.

147
Y 2 -. 77

-67

2(k y)3/2
.

:The difference in the sign. f K indicates that the: 'two parametri-
zatioxis are . contravalent.

10. ShoCthaf.the evolute cy-cldid Craceicf.'ss j, . "No:.6(`b))- is a cycloid.

tireploy the given paraMetriZtitiOn to 1.**.(e)::-4,- a(1- - cos`: t t) ;
whence?

..
1 4;/3. - cos t t

- cos t

Nor tuse - cos t =-12 sing . E to obtain

_(tin- coda 2

a .simpler form for computation: Note also that
ds = aV2(1 - cos t) = 2a sindt. .2

t.Now' since - --cos - sin -) we obtain2



Fran. (13) the paraMetriC-i"epiestation'of-the evolute. is then give=
.

_; sin_ t)
all _cos'-t)

In the.accoMPanYig figUrethe continuous trac
. _

;dotted. trace, its evolute..

.

. ,

"To" prove the curves.are'the same
/ introduCe the parameter

fOr:the evolute.. -Itte- parametric representation becOmes

x--= -1-:(T 7 stn.T)

-y = - cos T). .- -.

Thus the evolute is.acycloid,- translated from the original curve by the-
.

Vectar (-ag-2a).

:'Obtain a.cartesianepreSentation.for the
sketch the curve.

4 .

evolute of an ellipse and.

Use the parametric representation of the ellipse in NUMber 9(b} to.Obtain

Take

-(b cos e , a sin 8)

la? sing 8 f b
2

cos
2

e

the eXpressidnfor-the curvature from the same

in (13} to obtain the evolute:
source an& .inser-t



;.
,

= a cos 8 ---itt a sin e

1 -2= b sin e .T-)(a sin2 h2 :.costcos
2

9)sin e-

It"

ax =ja - b2)cos3 e ,

by b- )sin3 6'.

sin .e and cos 6 , square and .adcr0-:to ,Obtp-fr :
: 7. .

a..3')2/3 .4_ (by)2/3 (a?..- b2N2/3
y

.

an astroid. In the figure the cusps.

At Bt on .the evolute '(dotted)

correspond to. the endpoints A B

of the .aces of the. ellipse :where:

the. curvature has extrema:

12: The-involutes of a Curve : -...- _gien by :7 . -450:7). : can be drawn by _the
. . -

_ .

.,:folioWing.-simple mechanical 'constrUction"... I_ magine an inextensible thread
wrapped tightly aroUnd the curve .. on.,the side opposite

.-

the center '.

curvature. Cut the .thread
C...

ead at a =' c : (compare Equation (17) ) and unwrap
the thread-from the. curve while keeping:it taut. The .condition of _

tautness requires that the unwraed- thread is pulled out straight and,
remains tangent to C% . Under theseycoliditions show that the two ends

.:of the .thread at.-.-the cut describe the involute of C../ . = '

-r*

The length of unwrapped thread be-Ween a cut :end

tangency 12 = (a) on:-C./. is a c)

where the Sign is positive 'for .the end

of the tilfd Unwrapped -in the direction
, .

. .

of increasing 'a and negativefor the

other. end.- With this-. linderstandilig

( c -;

where = ',till is the tangent to C> at

Y ; but this is just Eqpation-(17a).. The,

figure shOws two _cusps2. bne arising at 'the

I and the point

1

of

p break in the;thread (c = c) and the- other

corresponding to the point Y0
where CA

has an inflectibn. The arrows Indicate

the direction of increasing ;17 .

Yew ,-:,

C./

' '



..

RVor

Note that-:this construction does not give all irlyolutes the.
parameter .interval is boUnded,- since. -Ehe .c: need not be chc3ien--
in the domain of p . To obtain an a.rbitrary involute by this constry.o-
tson` it may be necessary.tb add ten ,extra length: of thx:ead..Thls.is. What
we must 66 to Obtain the ellipse in _Number 11 as the involute' of the

. -

0 . astroid. - /Rite hOw the construction must be .modified{ when the point of
- tangency of the thread 'reaches a cusp of- the astroid. Suppose the:thread-

-10;1 being unwrapped Until it is tangent' at a cu,sP. After- the cusp is
:ached the thread Faust be wrapped back onto the curve until.another
Cusp- 1:S_reacheci. After the latter cusp the thread is unwrapped; again;
.and..se; proceed, altarnte...1.y wrapping and unwrapping until 'the entire
curVe .1;-s described. ,

13 The curve p ceb , in po.lar-Xorm, has the property that the position
vector. --of a 'point, on the curve makes an angle with the tangent to,. thecurve at which is -"the same for all points:
(a) :Verify this property.

In-terms of tb.e-.tra±anipter, e , the position vector is
ce.(cOs.19-', sin e) The tangent veotc5r is

t (a cos e -*sin e, a :sin e cos 8)

1/277-7T

From the formnla for- the dot product,
it follows for the angle 0 between
the two vectors that

cos 0 -

(b). Show also that the evolute of the equiangular spiral .is a.gain. theequiangular spiral.



= ceae ,a2 +

Consequent-ly R f l = e cos -e , a cos e 7 S e
(13)..i0 obtain. -for the evolute

- Apply .

caeae(-sin 19 cos 0)
. -

Set 0:=
2.

to' obtain

u

Y = kea* (cos

wiiere
. . .

. . -
Now.l.7" show -that-thiS, turve. can be a rotation be brought into

the original equiangular -spiral. _If ).'k and c 'haVe:the same sign,

e
-*

*
ID .so that ,e

a k= . Then, in polar form, the-curve is

4)
)*

given by = ce
a(11;.---

, if

lio-ir)
tdke so that e . -pen

and ci, have

a (*+ii-*8 )
= ce (cos (*

yields the polar form

Opposite sign-then

which again

a(*-*04 7 ce

,
-

14. f What is the envelope of the.straight line solutions of the differential
equation

t
From the result of Example..1116g, the envelope has; the parametric equations

n71 '.
x= ....-n

1 y = -( - 1}t

whence, for x < 0 , in any' case,

- ,

i.e., the curve can be represented by the graph of a constant times a power
function. Note that .the envelope does satisfy the differential equation.



t.

15. Shaw that the.. evolUte .of th.e involute

.

Let C, -be given by . a The inVolizte 'of

The evolute.-of th curve is given by

::Where 1: AI and K: are tangent, n
.
rr. 14. and curvature'-for

. .

:7ipiith the prime indiCating differentiatiOn: with reSpect.'-to- . a
..,,,, .

1 ...- --=1-=-.P: 11I11- E.. x-

We have: in the_

.

the involute.

where / is the unit upward normal ,to the i51a-ne

.notation of the text,

C1Vapd, using = -Kf

d-r.
( c

d a

- ( C - y 2 + (it{

Consequently, frOds. (12) and + ,

K_ rf (ICI x T') ( c - 2 r 3
r3 1-(c a)r 13

ayr v

= N x t L, (.0 - a) T c- T
4.

Now,' from t = ( c

1(c

sgn. r ,
I - a

hence,

= -(c - arc = -(C .
_ . d a

With this, it "follows .hrom (1). that 2 = Y

16. When does an involute of the evolUte of .a curve Coinide1.71th.
If the original curve CI; has no cusps than -What Tiniformation does EXaMPie
11 -6h give about the involutes of_the evolutef



1_
Let . X be any point of C' and. the .corresponding point of the
e:volute 6 . The point X0 .lies on the tangent line = + xfl0.
to the eyoltite at-;. Y . Front (17). we see that X lies on the
partidular in 'volute & for w'hidh c = ao

l 71r

- kj.../ had no :cusps .then 'from .Example ll.-6h we --see that.11t1. involute
may have_ a cusp only if only if c is. in the..

, dol p of 4- .1 a .

. LS the text it was asserted that the Solutions (25) of the s3rstqm of, . -differefitial equations .(20) are all -parametric represents on of the
same: geometrical curve. Prove . -

any member of the' family. -(25) can be obtained 'from any' particular
solution -by*. rotation and translation.

Consider firdt the solution Eiven. by-

The general solution (25). is given in terms of this special solutio
by

or

(i)

.e.is
x = x0 + cos (0 + a)dcr ., y = yo'\0

x = x0 +. cos a - ri: sin a
Jig

1 y = yo + E sin a' -1- Ti cos a... ..

sin ( a)dc

a t general Solution is obtained from the IparticUlar one by
titipti.thrOugh the angle a --f011owed by the . translation -(x -i-y >

Since ese- trafis4orma.tidna cai be 'verted it that any:: -

member

0 0.,

. (of :the family. can .be-.olak taine fro*" any by rotations and-, ...- ... .translations. _ - ..:

)4,
899...



(b) ',given a solution of ( ) , any transformation. of 'the solution by
translatipn arairotation- also is a-.-,so:Lutioni..

-Let, f(s) - be a'solutiou of Then P(s) = (x,Y)' in

(1); represents any curve obtained.: by: ,rotation arAd _translation. Insert.

35(:s). in (N) And equatians are satisfied. ThuS Prom

,

'ver s : ,arClengbh for' the- transformed .CUrVe.
( , 1 7T ihus .cOndition. (20d)_ s

Similarly
set = Tv where T.,. -ctrrvature...for. the transfornied curve; an
observe that-

dV.-.- (E"*. cos. 6: 7: Tr. in a -Sin- a --7)-*1)",:-ds,.

.Thus T v is merely: the. vector, obtained rotating

angle a _Moreover; since v is obtained from by. the Same- .

rotation., . T = K :(and alp& (20e) is satisfhied): Equation -(20c) then

folXoWs by (11) . -

A sophisticated student may observe at ,once the' Statement

of the system. or .egi.1a:tions (20) does not involve' the coordinate

system; henee, a...cUrve is or is 'notes solution 'independently' of

ro Mans and transliations of the .axes. A comparison of the two

- answers for this exercise: should :impress the clasS with the value. of
. . - .

, .

the Concept of invariance. .

. .

-18*. The 'catenary- (from. Latin, caten.ariusi..chain.) -15: the. curv4:.'asSinnedt3yi
weighty chain or flexible cable' of _uniform dentity when it is hung .

,.- -between two support points. This is the shape of the cable'. between. thee-
towers of a suspension bridge before -the deck is -laid. -The curvature

function for the .catenary..is k s !c. .

1 s2.-

' of catenary and sketch. the, curve.

*

a

Obtain' the' equation
.,

r-1-2 0 is k 25r. 'Then from (23) ,

1e
Q + a .

2

It
2
It'

Ooiaeqt.ently, 2
for - < e <

2. .
. .

1 7 :

900

= arctan. :



._x = arg , stab s , ,y...-=-
_

sink x in the 'expression for

':.,..t_ y-:.= -'cosh x ,A...:

it ,._ ...*-- --." -1 'if '
should .b7..familiar. ...-.

,.,..t,
Le 1-(s) represent7.a.cdry in .three-dimensitna2: spaCe-.. For a -siface '-,

. .. . ..
l . ....

1/

0

. curve-"jit 'is still true _that 71-E is perPendi.-941ar:to'.-the. tangent":
7.1.-. 4 -(s) ,`:and, we _define the principal normal as as the 'unit 4ector.ig

,- at. .' .. at Ithe direction of .- The curvature, is now,' defined by.ds .. ds I

that EqUation (10) is 'still satisfied. -I

(a) Obtain an exprestion for the curvature of a -spage curve
of anY parameter, not necessarily arclength.

(b) -What is the; curvature of a helix (Exercises 11-5, No. 6(f)) at .any
point?

(c) Investigate whettter Equation (11) must hold fora space curve.

Observe that there are infinitely many normal vectors in the plane per-
pend.icuErl.r to t . In the plane we were able .to -define-..a. unique -normal.

< in terms of --.6 .aIone cloy.. 3:1 = Tr x t where It is the unit. upward. tan-.- -- ._ ... ..

, gent to the plane);:- in space we cane .no longer do' so.
......-..

.41b..(a) Arguing.es in Example 11.:-6f, but with . K .= Ic-TE1 , instead of
. ....

1,1' idt
R. = ts .-obtain instead of (12), ...- v`

xTI:1
MI 3,

US I- the result- of (a). From

.7. X. (al: cos. .a! sin t , ;.t)

901 7.9



,EquatiOn .(A):. can be -shown- to be a necessary and 'sufficient condition.
1: that .the,:cni-v be planar. To show that (11) :need: not be satisfied for

a. space" -curve; consider the hell.X'.;- :lie have



1 Solutions Miscellaneous Exercises

31-M

..,,. .
1. (a). Show that the field Of complexz-numbers is a -vector apace o:ver the -

- real numbers.

(b)

Since the complex numbers ,form a. field (Exercises No.. 11) they
automatically satisfy the addition laws Al, 2, 3, 4 of Sectidn 11-2.
Since the 'real numbers are a subset of that-field, the multiplica-
tion laws 743_, 2. and distributive laws Dl, '2 are also satisfied.

Show that the set of positive, real numbers, Is- a vector
over the field Q ol2fra,11 real numbers where-vector addition. is
defined

°

as ordihary -multiplication Lof real numbers (for p
-fr-

p2 g ga. the vector sum is pg2) and scalar is
defined as exponentiation (for a scalar a s. e and a vector
y &-pc. , the "product of a with p is g ).

For any p , q , r a.
. and a ,

are satisfied, as follows,

Al: P4 = 4P

*A52: (pq)r = p(qr)

A3:- p -.1.= p

A4: . . .p P.= I

70

(i)a)13. -1.,-ikcet3)-.:

= P4Pjr '
ci)a pa

;

Ask

Oa, the vector space postulates

D/a the segments ; froM -the right" angled: vertexi of s iight-:teriangleto the': trisection ,points of the hypotenuse., Prove that: the of
the' sqUarea of the segments s proportiOnal to the -square- of thehypotenuse and find the constant of proportionality:-



2

Let 0 be. the right-angled _vertex

and 'denote other: -two,,vertNres

by A and .' The triiecticin.

points are given by

and
3

+
3

For the sum of the squares, since

X B = 0 we .have

-+512 +aA )9
The constant of Aportionality

) . What is the 'constant-of proportionality for the siim of the squares
of the Segments to the points of section of the hypotenuse. into n
equal..parts? .

a

From4the result of Example A31gi

.

k2

k=1

Given that the' sideS -Of a triangle have lengths
lengths of-N the Medip.ns.

Let 0 be the vertex' of the. .-triangle

opposite the side of length c ; and

',let A arid B be the remaining'.

vertices with !Al; a and b

(see 'figure).. If -M /6 the midpoint

of AB ,?then -the .length of the median

-014 is

= AA 4- 1, 2

+. '2A B .

c find . the'.



4

From -the law of cosines (or 2P .13 = 1121 -1- let -
a2 b2...." e2

Hence,

'IM] = 1662 2b2

1

The formulas-for the other medians are obtained by symmetry..

4. (a) Prove that the cross product is not associative:

It is sufficient to prove nonassociativity for a specific triple

of vectors. Let CI,3,1 )- be a fundamental set of coordinate

- vectors.. Then _ L.

(r. x 3) x3 =

. any
.

x 3)
..

c145t :tinder what condifAons is the
of three vectors' satisfied.?

41:91. f

.i x 0 = 0' .

let
associative law for the cross product

C

Expand by Fora41e (i7) of Section 1.1;-4 to obtain
(A - C)B (A B) C = (A C)B - ( C B).A .

.hence,

O

_Thus, either . A and -6- are collinear or ft and 6 .aze both

perpendicular to t

7 -



12-M

air

5.. The epicycloid of cusps is 'the' curve traced; out by. a point -Of
circle' of radius a as it rolls in
contact witb.and' outside a . fixed

- .cirVle .with radius na7:-.'(See figure)
The hyPocycloid of n cuspi"
-(n ' 3) is the curve traced,out
if the moving circle rolls On' the

. inside of the fixed circle."
. -

-6!-) Obtain parametric. equations
for the epicycloid and the
.hypocycloid.

O

a

(/-
Corisider the epicycloid first. Let the radius of, the rolling Icircle."

be a , its. center, C., and 'locate the origin 0 . Take the

initial position X0 of the point r/S at the i ersection of the

fiXed circle with-the positive x-axis as indica//ted in'.the figure. .

Mhen the line of -centers do hhs rotated through an angle 0 the

moving circle has rolled out the srclength na0L. If 6 is :the

:angle ,between . and .00±2then na0.=- a6. ,'.whence .e = Take
0 a;.ezparaMeter. Observe that .n 0 sin OT and

= C-cos(0+ e) , , consequently the parametric

e uations of the epipyloid-,417e -

cycl

os Of- cosk-n.÷ 1)0]

sin 0-- sitt(n + 1)0]

see ac8ompenying figure

sin

a'

observe that

`''2",=--.,,.6 4-7-a( cos( 6 :- --
.0......c%_.,:..

--.
If

7-.7e .

,
Vbs§deeS8 -bi-..

.

,......-- x._.-7 -arc-n ,IL]Scot- 0 -i- cos(n.: - 1)0]
.

.

3c : a [-tn tH.1)"sieln 015,-- sin( n - 1) 0]
a .

Prove that the epicycloid.ya
closed curves.

.

.
.hypo cycloid of;i: n

- .



Fir.st we observe' for = (ra) that 'r(27r) = 1-.(0) thuS-- the

curves are closed'. Now consider the polar coordinates

a point ork,:the epicycloid. From co =.arctan C ,

:

(n + 1)(n + 2)8(2(1 - cos nig) >.

2
.

(p,&) for

.. '.
and 'the zeros of -the deri-Vative Eiredi.isolated. Thus. the ,polar angle

.. Ca, is an ancreasini.funt-tion of 0 . FurthermOre, under the stated,
.... - ,

*Conditions .- 14, > na > 0 so that the curve eathcrt intersect .'itself at
, , .. . .

the origin; and W F. 0 for 0 = 0 ,. (.., = 27r for 0 = 27r so that no

pOint of the curve except_ l'(0) = P
-

(27t) corresponds to two disttnct
I

0
values of c .

A similar rgurnent holds for -the- hypocycloid:, .itII

(c)- Determine the areas enclosed by th epoicycloid and hypocycloid of. .

n cusps.

From the calculaion ix= Pa.rt (.b) we have for the epicycloid

xyr - yxt = (n + 1)(n + 2)8(2(1 - cos n0) .

Apply Formula (5) o'f Section -11-6 with the integral taken over the

.interval [6 27t] obtain the area.

and

A = (n + 1) (n +-2)a.27r

Similarly,' for the hypocycloid
. -

yx* (n - no)

7.A = .(n - 1)(n a27it .

I.

conSider a transfo=mation :of the plane in which-. the
coordinates axe are -changed independently:

(x,Y) (t,TI)

scales along .the

0

where , = by.. Show that if K is'the curvature and
angle of inclination- curve-at a point then the transforMe

ab
at the corresponding.b0.1tt,' has the curvature

curve,



. .-

--

---,--"4"

i.

..

I f -Elie. curVe Ls. -given' by 2 = (x,y) then the transformed curves is. .

-/ 4 (a.X;by) . From 2* =(x'23/4) =I12/ !Coos e , sin e) , I* = (ext lby0
we he.ve II"' = IT' 11/a

2
cos

2
b2

2
:I- b sin e . Use this with te. (ax" ,by" )

to obtain the result from Equation ,(12b) of Section 11-o.

4

Determine the radius of curvature of the ell e of C. in. terms of ...the
radius of. curvature of C.. .

d-r.'In the 'notation ot the text we have where. Q.. is the radiusda
of curvature of the eVoluta. From Section 11 (15) and the following-- .
equation,

1.

ds dK ds
da ds da -( 5gn di` da ds

-(sgn ds)( k(sue - t)ds

Now let R be the radius of -curvature of and observe that
A

TO' = (sgn g)s to obtain -2
. .

CZ--.`.13 ds sgn ds) ds
v dR dR).0 Id1111.)

-1114-4.ence

Find the envelope of the family .of straight lines glven by each criterion:
_ (a)* The product of the? x- and y-intercepts is cons;bant-

..,

The. family -is given by.

-where_

(3.

. In the slope,d.fitercePt. form of the line

+
k = mac+'I

sgn

= 2 . From the discussion of Example the.
a

enveropa can be "given in terms of the parame-ter a ,

t f(M) =.-117mr sgn ; then



a

Hence,

x = -fr(m) =a

y -mf t(m) f(m)_= 2 .

Thus the envelope is the.hyperbola

xy . 2k .

This corresponds to the well -known .result that the tangent to o-a

reCTtnguier hyperbola,intecepts with the asymptotes a triangle:

of constant area

) The sum of the-xl. and y-intercepts is.constant c where

The fpurtiy is given by with c In the.s3ppe-intercept

form,

r'" a -
cc

cwhere m =

-a = mx c
la

(c - a)2._ _

c vke-

As.:Can be seen :by employing-a-45(.71. rotation
. ...-

parabola.

of,axes,
.

this curve is a

1



11 -M

1

.t .

9. Obtain a-paraietric representatidn-of the follumof.Descartes'given-in
EXercises,5-71 Number 13. Repeat 'that exercise in terms of the new
representation..

If the. parameter St

out and x

where

is introduced-by y = xt

solved for as, follow62

-14

then :x2 can be factored

x3 + y3 3axy 3 'x t3) = 3ax2t = 0
NN_

x =
Sat--

-i-+t3.

3at2..

1 + t3
.

Note that the origin appears as

in the limit as t appraoches

in the domain of 'the parameter.

an4intervalby using-the paramet, la
1 - t

obtain

a point on the

co also-l.that

The domain of

er-

4

(1 u)(1 + u)

11

2(3u2 + 1)

u)(1 - u)2

Y -2(3u
2
+ 1.)

.

curve for. t = 0 ad. also

t = represents ap
tine parameter is made into

Set t =-1
+ u
-.11 above to1

4.

TA. origin is a point o the graph,of u = 1 where the tangent is

horizontal, and u = -1 , where the tangent is vertical. Elsewhere thik

slope of the tangent is given; by

411 (1 + - 9u + 3u2-
+. 3u./3%

4x - u)(1 + 9u + 3,2 3A

(a) -Pr the,. following generalization .of the LaW of the Mean.

continuousbe a lame.cUrve given by =1"-(u) on ia,b] If r is`tOntinuorus

on the closed interval [alb] if '' r1- 'exists on the open interval

.(a,b) and is nowhere null, and if it(a) it(b) : then thereexists a'

tangent t-
0
= II(U

0
))/

0
)1 for some' u.- .in't,he open interval0

which is parallel. to the chord joining the,endpointa_of the curve.

910.
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. .

T.-- Val , . As fOr thOprdinary Law,:ofthe Mean it is'- .

convenient t introduce the: *
(signed) d tance of the point

X from the ,dine l AB (see figuee).
. -.

- distance-i6 t 8.
. . . .

where 0 .is.counted pOsitive

is on the left of AB and negative

if I is on the -.Oiisecilintly

(-(T3 AY 1)1
. IB -

where N is the unit upward normal to the pItane. SinCe.

for both t .'a and. t = b Pt. Rolle's Theorem:-that for

some point u- of the cpen interval (a,b)

i.

0

di 1

da

[ 0.3 - x

uo - X1
-.0 .

Since the cross product must be collinear with N , it must be null.

1-tfolaol..zs.-thEi-tallE0-=0,11ence-tha-t.--Eois parallel to'

the chord AB as claimed.'

(b) Express the Generalized LawofAthe Mean in terms of a Coordinate
representation-of

Let- e. be given bi-ihe'coordinate representation x = 0(u) ,

y.= 1.1f(u). . .:There exists a point u
0

in (a,b) such that

-(952(u0) , lio(u0)) x(OCb) - O(a) *(1) lir(a))

Since at least one component of the vector on the right side of

this equation' is non - zero; saytbe'first,-then X- may.. be elikipated

to give

1r(b) --*(a) 1111(u6)

0(b) - 0(a) 01(uoi)

'

'4.fbr some. u0 ,in (a
,
b) . This last statement is the expression:of

,

he, Generalized Law of the Mean- found in most texts....



-Proye or disprove the Generalized Law. of the Mean for curves in E3.

The theorem fails for .space curves. Consider tfEe

(Exercises 11-5, No. 6f) for .0. t < sr We have

-a10,10 Thus the chord has the :direction of the vector
. -

(-2a,a,1) At the same time for to. 'in'. (0v) the tangent vector,

of th,t helix
(0)= E11000) 0

= ( -a ,cos 1)

has a zero y-cootio only for t0 so this is the only place

where the tangent can be parallel to the thord.' But then

X0 =. -(-a,0,1)-.1 so parallelism can only oc'cUr_if = 2. .whic,h:

is known to be false.

(a) In Exercises 11-6; Number 13 we ,gave definitions for the pr

normal ra and curvature K for a .space curve r =14(s) . The
v-

vector is perpendicular to ri , but it need not be parallel to

t e introduce the binormal vector =t :x n . Recall that

(1)
d
at

Kt1.7
s

and prove 'that there exists a scalar t such that

(ii)

and

= -Kt -rbds

at, =
ds

The scalar T is called the torsion, of tht*:"curve.
( fi), ( iii) which 'gener Formulas (l0)' and (11)
are. the Frenet-Serret equat ns for the curve.

d'a

ds
lies in the pla

ds
arG +

-I -and lb) we have

tions (i)
ction 11-6

for some scalars cr and SimI1Eirly
. .

at3 Xt

late ,
= b

iczt dt -...

bds )÷ (' x- (IV .

4:7(t . x x )

to obtain

-on N.13
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-Take..the dot 'inipd uct with

Thus -.

."d Xt:.+TD+:
ds

.

WilibiL is Equation-tii) 0 an&

and S ,-to *-Obtain"

e _
db =ds

3.-1LAX:

_= - K tand

differentiate b = x n

db 'N dn
, .

. ic(t.-* 31), tt ...K.-1- Tb
..

- , A

-

. t
which proves ohs .result.

to obtairi,..-

, e

dOth

(b) We haye seen that if the curve is plane then T = 0 °ice, con-
versely; that if, = 0 -then the curve is plane. (lit Show Cer
given functions = k(S) T = 2(s) that the solutions of the
Frenet-Serret equations sub-jec.t.lo 'the initial conditions

(iv) 1(0) = 2 ( -t,_
0

is- unique.)

.

Proceed as in the uniqueness proof in Sectioia 11-6( ) Let rl and

ies the Frenet-r
2
'be two such solutions, then it = -

2
Serret equations together with t homogeneous

= =
Q, 0 0

-where X
17 1 etci. Now observe that

ail
rt.

" .dt 7
;

K :111) + (to t).S

'conditions

-T(b

2 -53.-{t?
_ ds :

From thik and the ipitial--condLtions, it follows t hat
4



.... .
...2 _,2 iw.r:

,
- .

t n P V ( : ) , ; whence, t. = 1 1 - =:15, . ince '"1".(s) .= t.'= 0'-ir

it f6llows Via 't(S): = :-.constant; hence, by the. initial, condition.

1"( s) .-= 0 arid .uniquen'eSS IS...proved.

We have already -seen that there existsgps plane, curve-
es the egnattegs -r* '0 and:. the initial -corlditlaris

11 -actFt the last. condition 'me rely.
fixes the plane contiining_the Curve), for we have characterized
such a --plane -curve by the curvature. function alone... It follows
from the fAlqueness ..theorem that .any solution of the eq9..a`l-tions with_
T = 0 must be plane. -

911; .
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Teacher I S' Commentary..

Chapter 12

TC 12-1. Introduction.. ,

t

In this 'chapter and in-Chapter 1-5 we examine the uses of- the ca.lcii,lais in
a physical science. The objectives of the two chapters are not the, same. In

4'Chapter 15.2. our:purpo se is to. show the breadth .of..applicatiOn of
..?y; sa...,1Tfiit#' )10v it enters at every stage.n the development of a*8diende. In"
this :chapter- we examinea- very limited segment of the science of mechanics,
essentially "only 'an. introauection to the dynamics of a particle, -in-order tO
exhibit some of the more s gni ficant ;zses of the methods we have developed
in Sections 9,- and the Vector approach of Chapter 11. The mathe-

- .

mattcall content of this chapter .is the solu.tiortOill linear differen-
tial equations, but with enough indication.(the' Pendulum problem) that non-
linear problems are also important. /

- The hiStorical material in this chapter is concerned witt; the evolution
of ideas rather than names, dates, and anecdotes. Its purpose is to provide
eu opportunity to learn how to,ask and analyze questions- about the real world
with the help of mathematics. For this purpose,_ it is hard to better the
illustration tof the -creatiOtt ofinechanics. in the hands -of-Galileo,. Kepler,

-and-keN:rton.-

rnsofar as.
make aidginenta-
interpretatio
student. 8.1
chapters will

of the text.

is conderne with the-.physical world the student must
cipt-the..appropriateness of.matheMatical descriptions for the

if the physical world. This is not,an.activity;fcrLi the superior:"
the middy ng studett the !background of the- first eleven

also fingi :the interplay of Mathematical and physical.' 'ideas
- Questions will naturally. arisewhich far..beyond the ;material
Subh prbbings shrSuid be encouraged, but it is usually necessary

to make, an. effort to overcome certain anxiety to achieve the freedom to
eXplore and .become'eacCi_ted about iuestions for yhich it is not clear whether
the student and the teacher have the resources to find anagera. Zrery
scientist has felt the 'dame trepidietion-wklen he dared to push ;beyond.the
limitations of ,his knoWleage. 14

. . .



Since our- purpose isnot primarily to teach physics it will\rObahl;bec
. _ .

.
.necesia.ry to put bounds on the clas discussion or.physical -questions.:

Although we Wish to avoid -a superficial to sclence ust.,s- much as
. .we wish to avoid mat--,tics, the text;. so cannot develop the

ideas of...meefianits in the detail necess for a physi course and- it gives
.only-t.h.e. briefest account of ,the-fiunle.ti ns of mechan.l... YoU may wish to
refer students to Physics, PhysicalSciences`8tudy. ComMittee,-(Heath, Boston
1960). or a text In' use in school, Wi-hout sacrificing our -,..i.hasis---s>rt the
Mathematics, .we hope; -that the stUdent".Will perceive 'the calculu.s an
as subjects which were. born and grew up together. &lid-will maintain a. . . .

:the unity of knowledge.,

.'7-t_n contrast to Chapter 9) the problems' are not meant to Illustrate a:-
narrow r_ ange .1:41 techn±qUes 'which stem from a siTtgle frequently occurring

7,pp.tternit a brOad spectrum- or sciences: Rather problems coMe out the
development_- of one sciende.ana .the student-ii plaCed.in e position7of a
creator of mechanics. He aces not know beforehand what analysis will be

chanics
ofsense

.fi-uttfull He must be _ingenious in. drawing Upon xis knowledrge, with '&11 its
,limitations, and _perhaps inverrVanalys is if necessary . talthough no basically

new ideas are really needed here). To a large degree, .the science noses the.
-questions,. anri we have fo d lines s ge ed by the sclende in, selecting
problems, subject.to the restriction t t the be approachable by techniques
within. the comprehension of the studen In- attemptin.esolutions he can expect

.

'to fail as. much as .to succeed. The. oratory 'activitY- can be instructive'_ . . ,. . . . .and z=ewarding: even :if it does not solve the. specific. problem posed. There-is.
. .

. . . s. . . __no reason. be discouraged by the inevitable -false trails. Even Newton
stumbled. Kepler is-. said ..to have ..written qn the title page. of one of his,

_
. . ._ . .lesSer works,. "Even .a blind chicken odcasiongtily finds a. kernel of corn" .---. .

.' not self-depreciation, °but pleasure at 'coming -through at. last. ff Kepler.
-1147 could -feel:like a chicken in search of a grain of truth, no student need. .
-

-. - .. .tebe ashamed to lose his .yay' in attempting the solution o a significant ptoblem.- .
.

... i /
. . ..

With this understanding of thernature of the problems, the class caribe
excited simply by slyOrpening' their thoughts concerning a challenging problem
'in open classroom discussion where 'conjecture and'speculittlon based on physic.
iri tion can and.shfouldplay as important a role as the-mathematidal 'argument\ch

, whi final ly clinches matters. e suggested time of 'one month for coverage.
of this chapter is meanttO allow \.gor such classroom exploration .anid, for....

;detailed general.discusslon of several_of the more demanding problems Time
is not expeCteeto'he adequate to cover: all. of Ihete in depth. We recogn 1zek
the :impossibility of programing such activity- any precision. It is

916
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12-1

bound to .produce unanticipated- reactions from the ,studenti -- mostly In. the
form of half-baked ideas, yet we 'confidently expect that a few students will
produce ,simpler and more insightful art-tacks on some Of the problems than we_

have provided in, this cormentary....'' II

"Solutions Exercises 12-1 .

1. (a) Consider aln inertial coordinate system, that is, a system in which
Newton's laws.hold. Let i(t) be the path of a particle in the
given system Eifid take new dordipateS for which the particle path
becomes Vt.) = ibcoordinates(t) -1- tv. where v is a constant krector. Describe
what tiae change of coordinates means. Show that-Newton's laws still ;
hold provided forces are the same in both sfstems. This result is
the Galilean Principle of Relativity. -'

Observe' that the vel dit particle with 'es
- coordinate frame di ers tro the velocity inth? o
nate frame by the constant vector :

4a,

t to the new
inal

t t( ) -=.---S1(t). -..4-

.
-T.-7-

. -
It follows that_ the-lief-7- co-ore/nate frame is moiii.ng- with the strans--, .

. -
-,.. _..o

la.t...g..**-yelocily -"V with respect to the original frame. Note'. . particularly that the new .frame may have any faxed orientation with
. .'respe-ct to 'the old frame; t,hat'is. there is no relative rotatory, .

motion of the two' frames.
...,

... .

Newton's First Law is immediate, since if the particle is
...

_ -moving with 'constant. velocity in the original frame; SI
v

("I)
,

= v
4, . .0

for all. t , then it is moving -with constant elocit5; --
1-

.

p'-('t) .= 4.'7.° in the new fframe. Since- the acceleration
'same in bOth 'frames, Newton's Second Law -(1)'is 'the same in b.
frames. Mote, however.: that mif m is not constant, say = (t)
then Newton's Setond Law in.the Form.-(2) appears to fail. In order.

. .to preserve 'Newton's Second Law, and conservation of momentum as
well. we must consider a closed syStettr for which iratter',is neither
entering,nor.leaving. Thus --to .treat the'flightfof a rocket ix the
second coordinate -frame -we zzais-k add the term ,-p.'(t).17 to the force-
exerted "by tile. ejected 'matter. -This issue is not- relevant forthe.
wrark te: this- chapter since we hale: no need to change coordinate
fkam.es.) NewlontioTlitird Law remains valid since it is a statement

-
about forces.only, an-d forges-- are the sam in both coordinate
frames. . ,

-
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4.

r

(b) Let S(t) be-the particle_plith in' an inertial system. as ..in.Part (a) .
Consider 'a new system in which the path of The particle is given by. .

(t) = r(t) 1(t) . Show that the- laws oc motion in the new .

c Ordinate system are Newton's laws provided we add the inertial .

f ce (t). to the total of the forges acting on each particle .-

in the system

-the new system the acceleration of the partidle:As

4-1"(t) ;

.thus if ilif."(t) -is-the force att on- the particle in the original
_system, in order to. satisfy Newton s Second Law (1) in the new -

system we must postulate a force gp(t) ; .Dirn(t). .47(t) . If a
. particle is moving w1-6constant eloCity in the new system, then.

( ) = 0' for all tr and ( t 0 So.. that the for ce acting

on the particle is zero by Newton's' Second taw; hence, the first
law also,is satisfied. Newtonlr's Third, Ltiw is unaffected since 'the

forces- of .interaction between---Eig, as indicated their rela-

tiVe mction?are,mot affect6d by any Change in' the coon nate frame
(unless' mass transferred between ".objects"; see the solution to

.

Part -..:(a)). -

(c) !ihatTis the force experienced by an eZtOotaut of mass the*
sole- external force:exerted -.upon him is the gravitational- attraction
mg of .the earth.and his socket upward with actelera7
-tiOn equal -to - 6g. ?

.

t

The force..experenced by the astronaut is the force id a' frame

attached to him,.-. namely the sum of the i ial force and the
external gravitational, force.

In a frame moVing with the rocket respect 'to which, he la,
.

'at -rest,.

v

.5"(t) = zn'(t) -.6g = 0

where .z is .the upWard* vertical coordinate-fixed with4
respect ,to

the earth, and. with respect to the rocket.. additiqn
to gravity, he is experiencr, a force equal to- -6mg (that is,
6mg Adownward); hence, a total force' of /Mg -

. 16 .
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T.C. 12-2. Elementary Mechanical Problems.

y
In this section we'see -how mechanics cold have served as a potent

stimulus to the deAlopment pf calculus and analysis. Here we have a wealth
- ,

*

l

of significa which make extensive use of the mathematical back-
te .

ground of th , eceding
,

text; the reflective student will perceive many more,
,

some within his powers, most not yet. The search -for answers to problems

related,to the ones treated here still motivates much of the current research

in analysis.

In the development-of the!text we have adhered to invariant vector methods

in preference-to coordinate techniques. In some placIps such as the solution -

to Equation (30)xthe coordinate technique may seem more straightforward (see

the solution to No. 19), but we have kept, to the vector approach because the

solution enlarges the student's insights while the "coordinate solution is

relatively mechanical. In any case, thelvector representation 5f the problem

suggests suitable-choices of coordinate/frames. Anyone who was. forced to

learn mechanics in the old style which preferred three component equations

to a single vector:equat;pn will appreciate the geterEil gain in brevity and

clarity. Coordfnates are useful for obtaining some kinds'of numerical results,

of course, and are not to be avoided when they makefor simplicity.

. Numerical problems connected with the choice of units and changes from

one system-of units to another may be of great practical concern but they are

not relevant to the calculus and any numerical problems;we may give avoid such

questions.
'7#

The shock absorber of a car is.supposed to completely damp out all

oscillations of the stispension. Thus it corresponds to the damped case

r2 4k
r of Equation (16). To test whether a shock absorber is working pro-

perlyperly we need only hop on the bumper-and see whether it recovers ."rom the

displacement monotonically.

Solutions Exercises 12-2

,-:.......
1. Show how to choose a fundamental set ii,j.1c1 for the deriVation of (2)

-with the additional stipulatiot that vox > 0 .

)
. i .

IL.We assume an underlying right-handed frame of reference. Set k =
_... '

s

Isl,
.

Suppose first that vo and "k are noticoIlinear. We must choose_j

r.

/7)1
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12-2

.ti

perpendicular to .k so that (770,j,11) is a:right-handed triple.

take
. , x v .... _.... ._,..

Consequently, take j - and i=jxk. Compare the solution
.

. '(II x v 1
of Exercises 11-4, No. 8.)

2.-- Show that-Equation (6) yields the Solution (1) of Equation (3).

dzFor this Purpose, solve for in (6) to obtain the separable equationdt
(Section 10-9)

Thus, obtain for z 2

. 1E ,
dt 2gz

3

1 -
.

1 ZiT27t7 = t 4- Cl.';
g

_ \ 3
.

0whence,

(i) z ti 2 4- c5t c6 .

Set t = 0 in (i) to obtain .° c6 = - z
0 and set t = 0 in

to obtain c5 = 11
Oz

dz
dt 7 gt c5t /

Enter these values in ,(1) to obtain,
4

'ft"

- 2(ii)
z 7:

1
-1C`- + vOzt ÷ z0 . ,1

as in (2), where the origin was chosen so that z0 = 0 . We -dei.:not hgve 0

to work through the steps of the argument to obtain the constants in ('ii),
but we must verify,directly that (ii) is a solution of (6) with

.o. ,- ",
volqc

2 -f. ra(v0J
2

- mgzo

TO complete the solution, note that we have already shown in the text
that the component of v perpendicular to g is constant. have only
to take the x- axis -in the direction -of the perpendicular component and
'integrate to obtain

X = vOxt

920
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,
(a) Show that in the limit-of, small air resistance (k approaches zerb)

'-that the Solution (8). of (7). approaches the Solution (l) of (3)..,
si

Observe that

lime g + ((
e-kt

lim X =
1 + kt --,- lim

-k-Ci k-0 k2 k-O

- e-
k

+ X0
0

From the result of Exercises 8-6, -Number 1 we have for ,t > 0 .

3 3
kt +

k t e-kt < 1 - kt + .
k2t2,

2

Apply the Squeeze Theorem to obtain 'the result'

2 ' -

-t
g
=

kX = + t
2 0 0

11

(b) Shbot a.particle upward; will it returnto ground 'faster if
encounters. air resistance or no?

In the SolutiOns (1) and (8) , set X0 =' 0: take voz "where

c > 0 is the same in-- both cases,* and determine t > C z is

again zero. Without air resistance,

t2 - ct = 0'

-

yields the positive ablution

t =
2c

.g

With air resistance observe that.

z (c fi) (1

-ki
)

and for

.

2c
a , 'In particUlar .4

-
co: -2ck/g 2ck
k

) + -E-(1--
. k .,

= g(1 + e-2ck/g)[ck 1 - .e:.2ck/gi

g 62tk /g

g 1 +
ck/g

e-2tk/g)[ck
eck/g -, e

-
-_.1

+ eg .

e
tk/g . -ckt.k.'

ti
923- 99
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In this expression, all but the last factor are clearly positive.

The last factor has the form tanh X. where T. = 'S1=>0.. But
g

X - tanh X is increasing since it has the positive derivative.

tanh2 (Equation__ (6)- of _Section 83)_, _and therefore_is_positiv
for X >0 , since its value at A = 0 is zero. Consequently

is positive
2c

for t = and -k >0 .

(ii) z IS(t 1 + e-2c-kig) + -EL-(
e-2ck/g)

k

Since e > 2 , for 2ck > 1 we have e-2ck/g 1
and

2
4

z > + > 0 ;
2k

thus z > 0 for k >. Now from (ii), z can be equal to zero

if and only if

0
ck. 1. - e

-2ck/g,

g e-2ckig

ck- eck/s
=

ck/g e-qkig

X -tanh X

where T. = But X -Ntanh'X I.as the derivative tanh2 Xg
. -

from Equation (6) of Section 8-7; hence it is'increasing.ind since

the z-axis is directed vertically downward this implies that the

particle has already returned to ground level when t = 2c
. Thus

the particle returns to ground faster if it encounters air resistance.

4. For velocities gher than those for which the derivation of (8) is valid,.
but lower the speed of sound, it is found experimentally that the
retarding force of the atmosphere is proportional to the square of the
velocity,

Fret = I'll;

(a) Determine the-motion of a particle which moves in a vertical line
under the Influence only of iravity and air friction.

From Newton's Second Law the equations of.motion can be written in

the form

(i)
dz
dt

922
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(ii)
cl--E

dv
g

v2 sgn v .

The' two cases, it directed d-oT...rward (v > 0) , and v idrected_up-
,

ward (v.< O)- ,-- must " -be- treated separately. For algebraic simpJ4city
2

introduce the constant X =
k

. We then have for .v > 0

(ilia)
dv = g(1 - X2 v2)
dt

a separable -equation which has the solution (see Section 10-1,

Formula (10)),

v =
tanh..Xg( t c2) , for < Xv < 1 ;

coth Xg(-t, c2) , for Xv > 1 .

Thus, if the body i) falling with a speed.)_ess than
,

it, picks up

_ 1
spe-ed and approaches the asymptotic speed >7. ; if it is falling with

.-

a speed, greater than it slows to -the asymptotic speed 5,..- . For
1..

X
the displacement we have on integrating with respect to t ,

.
.

g
c + log cosh Xg(t tc2) , for 0 < Xv < 1 /3

X
2

(iiic) .,

z = _

c 3 4- 2
log sinh xg(t + c2) , for Xv > 1 .

7s.

1.

g

For v < 0 , we have

(iva). P'

whence,

dt
x2v2)

r's
.( ilvb) v = tan Xg(t .

Thus 'if the body is ascending with speed -v, it loses -speed until

the speed reaches zero.. From that time on, the body falls' and the

motion is governed by Equettion with 0 < v < . For the

displacement, we have on-integrating ( ivb) 'with respect to t ,

(lye)
1z = c5 'log cos Xg(t,}- c4)
g

.
923
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Re-examine question 3(b) for this form of -air resistance.

't 4 . %

-14 As in-Number7,30, ,-let : c be-'thethe initial speed. In Number 3(b) we
..,, ...

'"Y' have - found. the time: Of; 2cflight without resistance 'to -be e' :FOr---
-J....;

y 1 g
the motion 'with air resitance .ake 't = 0 as the instant when the

partiCle reaches 'maximum height, i.e., when v = 0 . Then in the

.first equE%tion of. (iiib) we have -c2 = 0 , and in (ivb), cli. = 0 '..

At the initial instant' t1 of flight we have z = .0 , v401007c . -

x
1Consequently in (ivc)-, = --- log cos Xg t1 and.7

.

and in (ivb

z = 2 iog(cos Xgt)( cos Xgti
X g

-c =
1
tanXgt1 ;

whence

1
(vb) t , = arctan Xc .

7s.g

At the final instant t
2

of flight, we have z = 0 , hence, from the

tlp;rst equation in (iiic), c
3

log cosh Xg t2 and
g

1 cosh. Xgt(via) z =
x213 cosh Xgt2

To determine t2 note that'the- endpoint of the upward leg of the

trajectory given by (va) at t ='O must be the beginning.point

the downward' leg given by (vib) at t = 0 Thus - 1

hence

(vib)

cos Xg t2 X
2
c
2

;cos N.g

sinh Xg t
2

= Xc .

t, - = aret.an 7spc arg sin.t Xc)

From (vb) and (vib) we obtain for the total -time of flight

t2
1

,

Xg

Now, observe for Xc > O that arctap Xc : Xc and argsinh Xc < Xc

since x - arctan'x and x - argsinh x are bolh increasing

functions of x . We conclude that

921i-
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5. (a)

12-2

2ct2 -
1 g
<

which is the same as the result of Number 3(b).

Solve the equation of motion (10) for s particle moving under the
influence of a linear restoring force without restricting the motion
to'one'dimension.

10.

The Equation (10) may be solved component-by-component to yield

(i) X = (cos /1.W.
t)X + (3/7 sin /E. t)zim m 0

.(b) Show in this case that the path of the particle is an ellipse.

_,..This l'esult is. strictly valid only if
...

X
0 0

and v are non-collinear.

From (i) the trajectorx lies in the plane through the origin parallel
....

0
tothe vectors X and IP'

o . For simplicity fix the x-axis so t
.1,_3..

h,tv.
_,...

0 -

x
o

= (x
0,

o
'
0) and the y-axig so that v

(g01q01°)
. Then, ,.-

from (i) -
. ,-

,

/ce
/:.

. = X0 cos cures + CO to Sill.. IAA _..-----

t: 4
y.,,. co Tio sin cij t

:Jr.

where ' co= 1/ . Insert sin COt = --/-- in the equation for x
.--.. ra Ca

110

to obtain'

x.- g0 cos tx0
TIO "0

Ylowlquare the expressions for sin cot and cos tOt and sum to

obtain

(ii)
44411101("'2 + 2bxy + cy2ax =1

2°
1 -0 , t0

1. where a = + .:2 2 -b , 2 2 c 2 2 2 2x CO no xo Tlo
2c0 no

o
..

e

6The discriminant is b2 I
ac = 2 2.

.c:
2 0 ; hence Equation (ii)

0., xo 710

describes an ellipse.

925 100



6. Find the Solution (12) of Equation (11) from the first integral ,of the
motion (13).

From (13),

(1)
dx.= h 2 l_c_fx 2 x2)
dt 0 m 0

a se.N.grab]tre equiation.- The solution of (1) is

k arcsin x = a
A

imy
.a.

0 2
2'

where A = ---- + x and a is the constant of integration -.x 0
Consequently, 6 aka

x = A sin Ifs. (t + ae.) ,m -

which we-recognize to have the same form as (12) with a chosen so that

'Ar
0sin a= A- cos a = A

0 1:

7. Solve Equation (il) when the force kx is a distuAing force (k <: 0)
rather than a restoring force.

Set k 2
m =.-c Equation (11)--then becomes

dx
c
2x = 0

dt
2

and has the solution

v
x = xo cosh ct + -2 sinh ct

V

Thus the displacement is unbounded for t >0 unless it should happei
that v0 = -cx0 ; in that case lim x = 0 . (Note that the bounded

w lw

solution is physically unrealistic, since the slightest perturbation in

velocity or displaternt.0e.ii2.' -,,ke the solution unbounded.)
No

926
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8. Use the Green's fundtion technique of Section 10-8(ii) to obtain a
particular solution of Equation (17).

12-2

From the solution to Exercises 10-0E), Number 6, the Green's function

for the operator L in (17) is

G(t,T) = 1
e
-a( t-T)

sin b(t
b .

. where a and b are defined as for (15) by

a = - b =F -722 m

-r)

Now apply Formula (28a) of Section 10-8 to, obtain the particular solution

x
2

=
o u

F -a(t-T)
e sin b(t - cocos T aT

Observe that

sin .b(t T) cos cat = sin[cAJT b(t - 1)] - tSiriTU,T b(t T) ] .

Now use, the result of Example10 -4e, page 558, to obtain,

F e-a(x-T) ra sin p(T) - Jur - b)cos p(T)x2 '2b
a2 4- (co - b)2

+ Ia sin q(T) - (w b) cos `T)
t

(ca b)2- I 0

where p(T) = coT 4- b(t - T) and q(T) = coT -..1:;(t - T) . The contri-
buaBSP-fram the lower end of integration consists-of term* of the form.,-

. 4 4

cle
-at

cos bt which can be ignored since they sa.iisfy the reduced

equation. From the upper end of integration'we find the particular
. -solution,

lb 0

F ra sin wt 7 (w b),ps t
2b a2 (w b)2

a sin cot , co 4-- b-)cos wt
.2

a
2

( b

Now let a be the coefficient of sin cat. and

cos cot in this formy.a. Verify that

cie27-4.- =. A and

927

= tan 54)
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A

where A and 0 are defined by (21). .Thus, apart from an-added

transient2so1ution of the reduced equation, th e Green's function

technique yield's the particular olution (18).

9. (a) Find the general solution of (17) when r2 > , the c corres-

ponding to the nonopcillatory damped solution (16) the reduced
equation.

S.

--By the same argument used to deriVe (18) there particular

solutiIrof the form 'A cos (4) , and since the constants A

and 0 are determined precisely, as in the text case we see that
4

they are given by (19) as before. Thus the general. solution is

x = A cos (cart - 0) + 6
1e 2

e
-St

where a 'am.doe,(3 are given as for Equation (16). Note that the

regime r2 > 41i correspondS to c > 2 in Figure.12-3c, and lies

within the domain where no resonant frequency occurs.

ic
(b) Find the general solution of (17) when r

2
= 41S., the so-called

critically damped case.

The soluti,. Of the reduced equation is

e-rt/4(
c
1

+ c
2
t)

and is transient. The particular solution, given by (18) and (19)

as before, is the asymptotic solution.

10. (a) Which is nearer to the natural'frequency of the undamped system
(r = 0) governed by (17), the natural frequency or the resonant
frequency of the damped system?

We have co = iflE as the circular frequency of the undamped'0 m

,k r2system, b = -22- -.-7 as that of the damped system, 'and
. :

)( t2
Carl =

k
2

as the resonant frequency. Thus

and

b

Car <b < WO

to
0
2

co
2

)

928



12-2.
4

(b) The "wldtp" of the tuning curve A = e(w) given by (19b) is a
useful conceptAinbToadcasting. If a receiver tuned to a station
bi.oadcastingat-a given-fiegmency-has-a-sharply reMWRI-tuning curve
there will be no significant, interference from stations broadcasting
at nearby frequencies.. A 'conivenient. measure of the width is

car
----1where CO- and w} are respectim'ely the frequencies below and

ar
above (.0

r where the amplitude falls to value , where v > 1 .
'

v
1 nress this measure in terms opIthe constants of the system (17)..

.:in an approximate representation for small c .

Observe that the.given ratio is equal to

(1)

where Sr-

$./+ -

;
n,-

)sar

The condition on
CA)

0
and is that ce

....---

given by (22).satisfies a = 1
--a.

r
. In order to simplify thev

computation use Sir. as the parameter instead of c . From (24)

/ ...-
c2 2s2,2

r L

'Insert this in (22) and (23) to obtain

1a
l! se

and.

1

r

a
The condition a =

v- 4
yields the condition (quadratic in S12)

(ii)
s14 ses22

1 - v2(1
r

)

which has two positive roots

SI = [ nr2
.4.v2 2

- 1) (1 -

929 fir



12-2 .

.L.

provided .rY < .

1

SI1 -'
, r

stituting these roots in (1).

Thp desired result is obtained by sub-

For 'p..nall c , S/_ is close to 1 and for fixed

quantity v2 -- 1) (1 - 2r4) is small. Use the tangent

mation (Section 5-7)

%b.

to obtain

sr+
S2- . 1 -

i3-4---7-c :LI 1 + 2E-
2

1 2 )1172
s22 r
r

+

Further, use

A 1-2,

r J= C = = c0 .

2 2
and

lIr
-

c

2
= 1 - -4- = 1 td obtain n

,Sr z c v - 1 .nr

the

approxi-

k ... 1
Designers of- communication equipmentequipment refer to Q = as thea ' C

"quality factor" or simply the "Q" of a tuning4,circuit. Thus the

quality factor las approximately the reciprocal of the width of
_ -

tuning curve when v = Vig"
the

11.. Obtain ForMula (19b) with the aid-of (19a) .to complete the work indicated
in the text.

1.14.

.4*

Require. 0 < 0 <air so that 0 > 0 end t116-phase does present
gat

rather than an advance. Then. sin 0 > 0 and

WI -40
sips -

(02)2 r2 2
m

,

cos 0
'c,.2) 2 , _2

w
_2

r -

_

a_ lag



(Observe tliat co-el may be,ne

inverrt..(196) .).'EnterAese re su l
'V+

(a9a) to'obtain (19b)
et

What happens when you

method of multiplying

-2' kx2energy E = my

We find

Since v =

.t.

Ir

r 12-'2

tive:..so that we do 4ot use:erctan'tp

the equation for A preceding
IS'

a.
- i-.>

..' 4
... '

:IP
.., - :114' , i ,

attempt toltrp-a first integral of (DO by the

by v =AS.-4: Con -'-.simer the - variation 31. time of the
dt

is energy conserved?
II

) -
, e°

2 2 '?

m(cl-i-z).(42)

dt

2 2IDE ja Army kx j
dt dtL 2 2

= -mry2

2

() is. not in the- form. of a derivativedt we do not find a

a

A
constant of the motion. Since :431-6-.E <0 ,-Er is decreasing in time (weakly'

decreasing-if v is -0 for all t , but then there is nd motion). In

a system with friction-it is customary to retain'the definition of, f

potentials energy for thefideill .systeni without friction. The frictional

system is said to be dissipative in contrast to the conservative system

without friction. J

13. Obtain the general solution for (17) when_the applied frequency is equal
to the resonant frequency for r = 0

J

In this ca s Equation (17) becomes
46.

L[x] = (D2 + c.402)x = F cos 410t

Since F cos ca
0

t iS itself a solution of the reduced equation the

method used to obtain a particular solution for r >.O does not work.

The Green's function technique does work, but the method of variation of

paradeters is computationally simpler. The reduced equation has the
r

general, solution a .cos c4.30 *-t + b sin
0
t . Attempt a particulai.

solution of the f

Note thatp.,

(1) = (t"

= F cos

cos w0t + r sin coot .

2 to t) cos .40 t
o

w
ot

-931

+.(1" - 20.1 gl)sin 0t

09
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-12-2

and equate. coefficients of the Lie and Cosine terms on the two sides cc

the equation o obtain
.., - .

,
.f
'4'

1
...,s, VI -k- 2ca Tit . F -cos

0"
c c a

. 0 1 4? ::/ 2
.

-....

Eliminate g from this pair to \ -
..-

2
i

1"' + 4 dr 11, .2 (t? .
o

j- /

Integrate toobterin

Since.any particular solution will do,-take d'. 0 . Observe also, by

the method of the text, that a particular solution for (ii) of the form

at + p can be found. In this case,

Thus the general solution of (1) is

Ft .

'
whence t = 0 above.=

2 (1.1

Ft(a cos (00t + b sin 0t)
2co

sin jot .
#0,0

.c: 40
Thus the general solution is the sum,of a sinusoidal oscillation and an

oscillation which grow without bound.

/6

-14. Observe for th.6 undamped spring that. the disRlacement x is an extremum
when-the velocity v = 0 and that the velocity v is an extremum when

.x = 0 7 WhiCh of these. statements is the more surprising?

dx
Since r: ==7 .--. an extremum when v = is usual. On the other.-hand it :dt
usually false that a zero of- x and an extremum of its derivetre occur

at .he same point.
0__

In the text it is asserted as "geometrically evident" from (30) that if
q > 0' therotation of 'the direction of 1r is in the negative (clock-
wise) sense with resp to B :- If it is not evident to you, make it s.

Consider the rotation which occurs in a short time interval 6t . From

(30) 47'.7 x thus the
m-

sense of rotation is clockwise as

seen from the half space into which

B points, as the figure indicates.

932'



a

4--

4,16. ForFor the'derivationoe (31), let 0 e 1angle measured positively in
the counterclockwi'se sense of "station ;the- direction u td the

direction. of u. as seen from the helisp4cei#to which B :Points. 'Show
that 0" may be taken as tile angle.inithe:dekiitfons of dot:Produtt

i2 -2

..z..

u
...1..

o -u and cross-prodUct- u
0
X u (1) and (9 of, Section 11-4.

-9....,,s, ....-_._

. .
.

4 -.4". Z
T-P the- definitions of dot and cross prothici the" Sligle,beiakreen t

o
and

!,.... . :s
..1.,. . ,U ' was taken without orientation ape:the meastiee , e:.-1-.-restricted by

-,.. ..
.9 ..< e < v . We MaY: set 0= Ifr---17 214. 7 r where i0,.'<ctir.'air c. If 0 < * < na

then * = e and the-defimitiolis agrep.If .0t-tif<2.7(.' then e;= 2w -- 4r

and-the rotation from.th&direction from 1,1 \tt i through the angle
.....N.

Q is clockwise as seen from' B . Thus ii.31', d:s-the.normal in the direc-
t
,

ion cif B to the plane'of.rotation.of , since\ ' erl= -sin * = -sin 0.AZ
'''-

).c -1

For the dot product; similarly,
.? 6

1 ItIsin-49:3FL

r r1
u Il.a.isin 0u0 n

a Ilulcos 0

17; Verify Equation (32) by obtaining the result k

preceding text.

Since v

'N.

given in the

and are perpendicular to B for the particular solution

(32), the conditions e x -Ts =. -E13 and .";7B = k(133 x 73). , where k > 0
Yield immediately

-kro

IBI.

from which the esult is immediate. (
18. In the text we have merely solved (29) for the component of the velocity

of the*motion-perpendicular to B Obtain the corresponding component
Of the. displacement vector and gil4 the complete solution of (26).



12;-2.As

o
41 ,

Add the general solution (31) of the reduced Egliation ..(30) and the

15-articular solution (32) f-G29) to obtain

. _,.. -.....
44-N.33

v -.sinc(at-13 E,x B= (cbs cot); -

..,

.

1,.. ,,IBI 0 ..e

..1... ....,.. ,E x B
0 - 0

- . Integrdte with respect to t to obtain .where u v
B2

1p TB-4sin cat ti dos catftt l) .i. tcE.x1:-
-0 -- co 0 14"1 0

.

..c.
- cup! - B2 .,

, \

',To obtain the complete deTiption of the motion, add the component (28b)

in the direction of B'to obtain with co= - -1 IB/-,
. m

. - J
E x B 2. 2 coX0 + t(t + ) + t E

0
sin t te.a.

B20,33 (A) 0.1 0

19. Solve (29) by introducing an appropriate coordinate frame.
)

`

Take a coordinate frame so that

= E13.,,O)B = (0,0,B) and (00

whet e B > 0 and EP > Q ,4and set (v
y,v 0v

z
) Then (29) yieldsx

the system of equations fez, vx and v

mv t =qBvy

.
my* = q

where the prime denotes differentiation with..respeet to t . Differentia

in the second equation and eliminate
x
v dby means'of the first, to obtain.

.q2ev

v = .

'ma

The 96314tion for v may then be put inthe form,
-

(ii)
Y
v = c sin(at -

where a .313_

m.

-

The second equation in (i) yields immediately.'

V
X

cos {at w
ori;

B

9.12



,

Integrate (ii) and.(1ii) and use (28b) to obtain the parametricl-equations

of the motion:

EP
x =7.57 sin(cet - 0) B t ax

Ob.

c
1

y = a- cas(at - 0) + a ---a

z - at2
E - Ti 4 c2ti ÷ a .. ,

. 4

...,2 z
"'

where cZ" c2 7.4 , al , a2 , a3 are constants of integration.
...

.

.
. _

,'

20. Show that the component of particle motion perpendicular to the magnetic_
field B is*:the sum Of a'uniform straight line motion and a uniform
circular motIon.

.

Use either the expression for- X given in Number 18 or th

representation given. in Number 19: From the re'sUlt.oflq.

example, write

where

)17'. =.X1 x2 ,

E x B
)r-1 jC0 t B2

*1
1110 3 a;

[ ( t) cos co t).11

u ig \
.n..

where 0 X 33,
and j = are perpendicular unit vectors.

-/-10 I 1101

rdfmate

1 -f

.
.. . .

21. Slicolft.that the motion of a particle in a constant electromagnetic field
we E =-0 is a helix (ignore degenerate cases).

Use.ei-per the results of Number 18 or Number 19. From Numb er 19, for

examplel.if E = 0 , then

- a
x

= cl sill' (at - 0)

y - a
y.

="c
I

cos (at - 0)

z - a
z

= kt

:935 1 3
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Change parameters by Substituting

traaslatiOn (sxlayez +1(0.41))
of M6ercises 11 -5, Number.6(r),

(at 0) and apply the

to -obtain, in essentimlly-the form

= Ci cos T y = gi sin T z =

22. Discuss the motion of a.particle under the influence of both-a constant
electromagnetic field and a constant gravitational field..

- a

Newtonts-Sfcond Law .akes the. form

-01(
m --2- rate 4-,q( B . .

dt dt

4

Tilis_equation can be written in the form of (26) with the introduction o_

the constant vector. EL = E + q- g- ; namely

d2'
(11. , -.''..;-.

....,

..
DI cl--7C cak,E + >c 14)

dt
-

........

and the solution-is given by that of (26) with replaced by E .

23. -(a) Solve-the equation of rocket motion (35) in one dimenbion under the
dMassumption that the rate of fuel consuptiort - dt and exhaust

,speed ye iv
e

I areArstant,

4

Let the x-axis be Oriented in the direction 'opposite to v so tha-
e

1F = (v,0,0) and ti
e

=X--v
e
,0,0) . :Since: 'Where the 9n-dt

stant k is positive, we have M = -kt + Mb - ibteer-this-in 35)

`to obtain the-d4fferential equation

a

% dv
Mo)(-kt + kveL

separable differdntial equation which has 13he solution

116 - kt
v = vo vellog .

1=10

For the displacement. .x , we obtain with one further integration

M-8
,

. M :- kt
x = x

o
-F (v

0
+ v

e
)t +,v ( - t)log 0

k
N6. ..,

-. ...

N

936
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12-2

(10 .For some purposes it is important that the acceleriation not exceed
s AR.some definite bound, for exampI to limit the strbss'on an astro-
naut- Suppose the acceleration is se-tat.this bound; replace the
assumption in :Part -(a) by the assumption -that the acceleration and
v
e`

are,constant and determine the way in which fuel thould-be

consumed to.- achieve this result.

With a constant acceleration's (35) yields the condition on fuel

consumption

Ma = -v dM
e dt

Hence for- the expended fuel m = MO - M we haVe

co

(140 - m)a = v
e

dm
dt 2

Cr.

which yields with the initial condition m = 0 at, 7-b= 0

-at /v

m -
MO(1 - e

e)

as the fuel-expended.

21.. (a) Sdive Equation (36) for the vertical
gravitational field near,the surfa\ce

3

ascent of a rocket in the-
of the earth -(g constant).,_/s-

With the same'converitions aa.:the s cation of Number 23,

g = (-g,0,0) and (36) becomel

or

(i)

Ndv
(-kt Mo)cTt- = kve - Mo2g s-

dv kv
e

dt -g m0 - kt

, _D
!Thus the solution for the velocity is

M' kt0
(ii) v- = v -

0
gt -ve log

m6

and for the displacement

O

-*

937
1 1 L'7.

log
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b

No.

Consider the motion of Part (a) for a rocket at rest on the ground -

when t = Find-the-relationbetween- the fuel ConSia-Med to the-._
velOcity- v . Estimate the fuel required to reach a given velocity
assuming that it is by far the larger-part of the initial mass M .

-The .initial condition is yo = 0 in (ii). Use Mb -
(ii) to obtain

v = - g<14_. - ve logk u

or, in terms of fuel consumed,

(1) v- =

-0

- - v
e 140

log(1 )-2

M in

Which is the desired relation. Now suppose for a given velocity

that m = Mo(1 - e) where e Is small Then in (i) we have

h.

.

--hence;

65

814
v =

.0

- e) =.1og(1 -kv
e MO

Igt4,1

(ii) m =,140[1 exp( -v 17_77:-.41 - .

e-

We may ignore e in (ii) as a first apprOxfmation (this yields an
upper estimate for m). ..,Note from (i) that the rocket will not even
lift off theakroundrat t = 0 unless

MOg

and this condition is assumed in the precedingesolution.

(c) Determine the fuel consumption as a function of time under tlYe same
:- assumptions as Part (b) of Number 23.

0-

In t he notation of Number 23, ,,the equation of motion becomes

1-1211.
M(6. + g)

e-dt.,

..

Thus it' is'ecessdry only to replace a by. a + g in the solution
a4NUMbe- 23!'(b) to obtain ti

=(a + g)t /v
= M (1 - e

938
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TC12 -3. Constraints. Use of Energy Conservation

The-subject of the cgaloidal pendulum deserves mOre.attention than it has

received in-the text (1010.mple 12-3). Huyghens developed the concepts of

-Co

t

.

evolute and of envelope for a family of straight lines in the courses of his

esearches on the pendulum. The practical problem in the construction of a

cycloidal.pendulum is to constrain the particle to a cycloidal path with a

nimum of frictiil. Huyghens-produced the ingenious solution shown in the

accompanying figure in which a curve e is used as a guide upon Which the

pendulum wraps its suppoi-ting,wire in is upward motion (we used a rod in the

text to constrain the motion to two d ensions and also to avoid questions

aboutthe straightness of the suppo wire which require a discussion of the

ideal string and the concept of tension) . The curve e is therefore the
. 4!

evolute of the curve C!... to which the motion is constrained. For a ycloidal

path e is merely the Same cycloid translated (E*ercises 11-6, No: IQ). For

the cycloid the length of the supporting wire is 2 = 4a and by (28), the

peeiod is 2st , which is the same as that of the circular pendulum of

small amplitude.

The actual design of pendulum clOcks ha;developedi1 along the line of

,- controlling the energy of a circular pendlaiam;.but'we cannot help but be

impressed by HuyghensTs elegant theoretical Solution, 'especially when it is

realized that his work preceded the development of the systematic calculus.

Huyghens was LeibnizTs teacher.

939
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Solutions Exercises 12-3

1. Obtain the Newtorilan-equations of motion for a particle moving on an
4 inclined plane subject to gravity and frictional forces of the 'orm (3).

Do not assume the z-component of velocity is zero as in the text:
.-. .

'

/

Since the motion is entirely within the plane we may set

it= X' = (x'00,zt) , where the primes indicate derivatives with respect

to t . The Newtonianequations of motion are

From (3) we have

mx" = -mg -sin 8 + Tx

mz" = T .
Z

-(pmg cos Oxt

if(x1)2 (z92
-(pmg cos 6)z4.-::T

z
-

I(xt)2 (z92

Thus the equations of motion take the form

x" = -g sin 9. (pg cos 9)xf

Ax92 (zo2
(i) -(pg cos 6).z

j(x1)2 (z92 ,

.

The stkudent has'not been asked to solve these equations, but the
.

equations cat be solved for the velocity by techniques already developed
in.the fext-and exercises.- Set :ref = (u,0,w) . Then (i) can be written
in the form

Consequently,

{

(pg cos u
la* -g sin 9 - 8)u

wt

41/J77-77

(pg cos 8)w

u2 + w

du. U2 w2 U
dw w

.7;

enwhere o: = tail
. Now, take % = u

and replace u by ?%.w as inw
EXercises 10-9, Number 3. Then;

1



= w
dw

= {X. 1 +
dw

Thus the problem is reduced to' the solution of the_separable equation

d% 01/3:71
dw w

which hall the solution

arg sink X log civia 1

where the constant of integration is incorporated in ,the logarithm.

Solve for X -66 obtain

and, since' u = Xw ,

1

= sink log c lw
la

,

u = w sink log clwfa

To complete the-solution, ever this expression for .0 in the. second

equation of (ii) to obtain

4g cos.0 sga,w

cosh log cjwla

24g cos e agn w

clwl
a

4. 1

clwfa

This equation is also separable and has the solution

1 c la 1 1+Cr w 11-a
24g cos e J 1 4. a - a) c ± k

for a / 1 , (we assume 0 < e <
2

so that a > 0) . Observe if a < 1

that is tan 0 <: 4 , then the z-component of velocity w reaches zero

in a finite time and the motion stops. If a >1 , then iim t = co
w-O

and the motion asymptotically approaches a. direct descent down the plane

with the constant acceleration

x = -g(sin e .L cos e) .

2. Obtain the corn lete-equations of motion for the system consisting of a
particle constrained to move on a frictionless wedge which slides on
a horizontal plane. Ve'rify that the 'motion is two-dimensional if the
initial velocity is perpendicular to the edge of the wedge.

941 11



Use the coordinate frame of_the text. Since neither gravity or the force
1

of constraint has a component' n the z7direction, Newton's Second Law

gives in addition to Equations (5a) and (5b) the condition on the
-Z=component

md2z =0
dt
2

hencez=z0 +.v
0 zt.Iv

.
0 ° the z-ccmponent of velocity is

zero throughout the motion and the motion is therefore two-dimensional.

What is- the normal force N exerted by the particle on the frictionless
wedge?

From Equations

J.

(5a) and (7)

N - M mg cos e

M m sin2 e

thus N = mg when e = 0 and N = 0 when 9 =
2 , which is as it

should be.

Consider the motion of a particle sliding without friction on a wedge
when the wedge slides with the coefficient of friction la against the
horizontal plane.
(a) Obtain the equations of motion corresponding to (7) and (8) unaer

dEthe assumption that > 0 . (Hint: -n175ider the equation ofdt
motion for the y-component of position for the wedge so that the
normal force exerted by the plane on the wedge may be taken into
account.

Following the hint, indicate the position of the edge of the wedge
in the xy-plane by (k,n) . To the Conditions (4) ..nd (5) of the
text, add the constraint

\

(i).. 7-1 = 0 . q

---7--

The componentS of the forces' acting on,the wedge in the y-direction .-

are that of gravity, -Mg , the push of the particle -N cos /

andy6he supporting force N
*

of the horizontal plane. Fr m
24wtants Second Law, then,

d
N* - Mg - N cos e

942
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Insert the constraint (i) in (ii) to obtain

(iii) = Mg + N cos 19 .

Corresponding to the normal force on the horizontal face of the

wedge there is a tangential friction force

1r dt

which must be added to the other horizontal forces on wedge. Under

the assumption that, at > 0 Equation (6) is then replaced by

(iv) M = N sin e - p. ( Mg + IN cos e) .

dt

;rate y and N from Equations (4), (5) and (iv) to obtain-the

equations

a
2x -Mg sin e cos b (1 + p. tan e)

dt
2 M +-m sin2.e-- p.m sin e cos e

(v) 1, j
d
2
g mg sin 09 cos 8 (1 + p. tan e)(1 - p. cot e)

.=

dt
2 M = m sin2 e - p.m sin e cos e

which reduce

right in (v)

the particle

wedge to the

S-

to (7) and (8) when g = 0. Although the terms on the

are complicated in form, they are still constant. Thus

still has a constant acceleration to the left and the'

right.,

(b) Given that the system is initially at rest, under what conditions
will the wedge be set into motion? (Ipore the difference between
static and sliding friction).

If the wedge is not set in motion then the forces'exerted on the

wedge are simply those of a.particle sliding on a frictionless

inclined plane and a friction force which counterbalances the

horizontal thrust of the particle. From Number 2(b) the normal.

force Ns on the static incline is given by

s
= mg cos e

and the horizontal thrust by N sin 8 . From (iii) with 'N = N ,

the vertical force on the base -of the wedge is

, Mg + N cos e .
_s

943 1 21
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(c)

The Wedge will not berset into motion unless the horizontal thrust

exceeds the frictional resistance; that ti-c.

Ns sin e > I.L(mg NS cos e)

(ActilAlly-the coefficient in this equation should be us ) . Combine
(vi) and (vii) to obtain the necessary condition for motion

< m sin e cos 19,

M m cost 0

As a supplementary exercise; the student may be asked to show
ti 2c.

that the Conditioli.(viii) is also sufficient; namely that 0
at

-under Condition (;Iii). This result is not obvious since the normal
force; hence also the horizontal thrust, on the inclin% is not the
same. for both the static pleine and the moving plane as is shown in

(c). To prove the result, note first. that the denominator D

ain he first term of the expression (v) for la is positive. From
dt

i).

consequently`

tanp. < < tan e

m cost e

D= M sin2 a - sin 19 cos 6

>144-msin2 e* - m. tan a sin cos 8>

> Q .

2-
. NIt follows that the sign. of =

5- : lag has the same sign as
J dt

t5- ugD , but, by (viii)

N - ugD = g[m cos e sin e.- 1.1.(M -1.- m. cos e)]
...

.
> 0 .

Determine the order by size of the normal forces exerted by the
particle sliding frictionlessly on a wedge for the three cases,
stationary wedge, wedge sliding frictionlessly on 5che horizontal
plane, wedge sliding ,witlal.ction.

914
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,Let. Ns , N , N , respectively,. be. the normal forces. in the three
0 g *

cases. From.(2b) we have ..)

N
s
= mg cos,p

. ,

P
and from the solution o I Number 3

ifM mg cos 8 s 0,
(ix) No

< Ns :

. M + m sin2 8: 1- ks ta2. e

Since,the frictional case may plausibly be expected to lie between

the other two we anticipate

N < N < N
0 - s.

and-this is .the result we prove.

Insert this result in (v) to obtain

Prom:(5a) we have N
.

(x) N - M mg cos b(1 + 4 tan e)

M + m sing (9.- gm sin.41 cos g

If the terms in g' are dropped the numerator: in (x) decreases, the

denominator increases. Consequently, by.(1x), N1J.> No .

To obtain-the inequality rip..<:Iirs observe that, with

defiled as in the solution of Part (b),

N = Ega(444
D D M(1 + g tan e)]

-m d
2x

s12.-67 dt2

ti hence the sign. of NS - N is.hesign,of K . ,EXplicity, K is
. given by

K = m sin
2 - gm sin 6 cos 8 - gM tan e.

m sing e - 1.k-tan 6(M m cost 8) .

Consequently, from (viii), K > 0 as we sought.to prove.

5. llbtain the energy conservation principle for the syttem consisting of
the particle sliding on- a frictionless wedge, Equations (5) - (6).
(Hint- Take as tiol.'t kinetic energy of theme the sum-16f the kinetic
energies for particle and wedge.)
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ak.

The total kinetic energy is

.
M .2 .2 2T = y ) M

2

where the dots indicate differentiation with respect to t . 4om
(5a,b) and (6)

= mcX 431c Star') + M S-

_ 41 sin e .4- (N cos e mg)Yi kisin e .E .
'Eliminate with the aid -of (4) by E = x - y cot,e to obtain

whence obtain the energy conser*ation eqUation

.T m40. = k .

.Thus the potential mgy is simply he, gravitational potential .of the

unconstrained particle.

6. What is .tlie magnitude 2+. of the force of constraint for the pendulum?

the problem is to determine 'the component of force -on the particle normal
to the path. Note that the unit tangent to. the circle in the direction

- ,

of increasing e is .t = (cos (90 sin e) , and the normal directed toward

the center n = ( -sin cos e) . The position vecto; of the particle
'is X = .4(sin -cos 0 .whence, on differentiating twice with respect
to t and applying Newton/ s Second'. LaW, _

N-c

= mX = (mie cos pixe sin e) -+ (-wee sin , we co'b_e)

-.tag t razo2 n .

SA.

Consequently the normal force is directed toward the center; i.e.) the
rod pulls -the bob toward the piVgt. For the magnitude of the fOrce we

ye with w a, and v= =

=
2

CO
2

=
DI

z - z)
V

0

)

where at 'the. last step we have used the energy principle to give v in
tterms of Az and the eleVation z

0 of the
%-h

stationary points.

9

4 7
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7. The textstatcsthat-i-.: is ,noE immediately obvious how to-use the con-
straint to eliminate the "constraint force X frOm the' equations of motion.
(15a,b) . Show how to do it. ".

Replace x and z by the pgTameter e ; i.e., set x = ,g sin e
-

= c94 e in the equations of motion, to obtain (ss In No. 6)

cj ml(Wcos e - 0 sin e) = 4n
.2MI(Usin + e cos e) - mg =.%-cos e

.Multiply the first of these eqxiations by cps 9 , the second by sin e

and add to get

rag - tag sin e =- o

which is essentially the same as.(21).

8. .Describe-the mokion of the pendulum when e = it is s.4tationary point,
that is, when = 1 in (18).

*
Since 1 + cos* =.2 cos2 -f we obtain in (18)

t fi f
e

o,cos- 2

By the solution of Exercises 10-3, Number 11(b),

t .= -- log tan e 4- 7C Oci < e < 70-

where = 0 , w = ia. oat t = 0 . : Invert this relation obtain
J

. .

L

e = -n + 4 arctan et-4777

From this relation we see that it takes infinite time to reach e = n

from e = 0 under the given conditions.
A

)

9. Estimate. the difrerence between the error of-approximation to the
. amplitude of the exact Solution (20a) of thependulum problem by that
of the approximate Solution (24a).

. .

u .

.

Choose the initial condition: e = , .40

-
40= 6 > 0 at t = 0 where we

. ,

2 a t .

require coo < in order to get the' periodic. Solution (20a). From

Equation (16) with w = 0 we obtain the amrp1itude a given 7
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cos a = 1 2g- ta
0
2

of which the estimates are to be given. The exact
solution for _the first quarter cycle is given-:by_a

e -
t f

and the approximate solution by

/cos cos a

cal sing t.
W AThus cod a' = 1 - where cx. is the amplitude Or the approximate

solution. . From Example 7-5b we have, from the estimates for .the cosine

2 A 2 -2 o4
1

a
- < - -Tee < 1 2 71.F

From these Inequalities we obtaill

a4 - a2 <: a <o12

Next we use ,the inequality - x < -:Tc for 0 < x < 1 'to obtain
a2 .

with x = 12 < < 1 ,12

A
0 < a 7 a < -.

10. a) Show that the period 'of the Pendulum as given: by (20) is an
-increasing function,' of ea .

.

Let f 0 r be given by

(i)

_ -

Consider.

-r = f(13
e

. 2
. ./.? 0

d*
.g 0 ,cos * - cos e9

.

..,

f(Xe0) where X >a . With the charige of
:

. :

obtain

,f-E8 rj. 13.1/4 ItroN.) d4r

0-

948

variables'

126



e
0

7s.

where g(4r,x) - . We have 'r =16_ g(*,1)d* .

,cos - cos x eo o

Consequently we hive only to prove that g(*,X) > g 1) fOr .> 1

and apply the result of Exercises 6-4, Number 18(b) which extends a.

strong inequality between continuous functions to their integrals.

Obtain the derivative of g with respect to X ,

cos X* - cos xeo 2
+ 2.--octy sin M 2r xe0 sin xe

33.5%.
g(oh)

(cos - cos xe ).3f?

S e 3kg is continuous in X' we need only. establish that the

de.ri-vatije is positive when X = 1 to show that it is positive in

a neighborhood of = 1 . Thus we have reduced the problem to

showing that the numerator is positive when X = 1 , that is

earl

h(4r) = cOS-* 2 .sin > cos e0 sin eo2

when 0 la< *. ^< eo . For the prooi' we need only establish that h is

a decreasing function.- TO this end, observe that

1
ht = cos g sin IV

.1
1=0 cos *Op. - tan *) <2

srwhere for O <41. < f , the 'result fol.1_ow4.from the inequality
, V -

< tan ir k see Exereises 5-3, NO. 1.11-(11) , also the" geometrical -argu-

ment in Section 4-4), and for <* <sr the result is ihraed.lat-e from,

the negative sign of both, terms in- the first expression for' h' (lt), .

In summary, we have proved.that. the period is an increasing

function of- e
0

in some neighborhood of e0 (i.e., for X in some

neighborhood of I ). But this result is independent of the choice

of e0 Hence by the solution of Exercises Number 11, I- is

an increasing function of 0
on the entire interval (0,1r) .

- .
Show for a particle oscillating in a potential well that the motion is
periodic. Show further that the time to traverse the well from one -side
to the other iseq0,11 'to the time to come back.
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The 'problem isl! to stiOv under the conditions of the text the integral'

b

:_f a ,iu(a)da-
TAD.)

, -
converges. If the integral doee converge then so does the-integral.

.
which correspor s to ttie time of the'back swing.. and ince. TJ(a)' = U(b) =k
the two -inte ls-are .Since U(d) < k for a < cr< b the dia-

1continuities of thetegrand occur only at. the endpoints
,/k - U( c:r)

[a,b] . of the interval. Nt the neighborhobds of ti;ese points apply-.
. .

TheorL 10-6a with a test function of the form A

-7 f S add
2 -'u(b) u(-0)

.

; 1)-a01
1/2

:example, at do = a l we must have U1(a) < 0. since "U1(a) # 0
-U(.1:7) < U(a) for a > a . 'From- the definition of.. derivative,
. -

U(cr) = U(a) (d,- a).[U1(e)

where lim = 0 . Take a neighborhood of
a-0

Then

hence,

Ej

and

in which AEI -
1
U (a)

At-

k - U(a) =U(a) U(a) >1--1U1 (a)1.(a

1 2
4

..Similarly in some neighborhood- of b ;
°..

1 2

JUt(b)-1(b1

Frorri. Theorem 10-6b and Theorem 10-6a it follows 'that integral
converges.

1

. Let s = -0 ..correspond amaxiMum'of the potential U with T.1(0) 7-= k
U1(0) = 0 and U"(0) < 0 where U" is continuous in a neighborhOod,
of 0 . Show that a particle in the neighborhood with total energy,_ k
and-eloCity directed toward 0 takes- infinite --bite to reach' -.0' .



The problem is to prove the divergence of the Integral (30) in this case

(a = 0) . To prdve this we obtain a test function of the -form and
cr

apply Theorem 10-6a and 10 -6b.- We use the tangent approximation to

k - U(a) this time obtaining a lower botind for the error term in the

form Ca2 . Apply the Law' of the Mean twice to

U(a) - k = U( a) - rk - U=`(,0) cr] to obtain

U(a) - k = aDgli(a ) Ut(0)j
. 1

= a U"('a )2

Where a
1

lies between a and 0 and 62 between a
1

'and" 0

_From the continuity of U" we- can choose a neighborhood of 0 where

0 > UP( a) > U" (0) (Corollary Lemma 3-14.) . Insert this in (i)

to obtain

whence,.

k - U( ilU" (0) I a2

1 2-. 2

- U(a) a I Du"

which proves- the livergence. the integral-

13. Consider a particle of mass m which elides frictionlessly _on a vertical
circular hoop, where the hoop itself is spinning about its 'vertical. 'dia-
meter with constant angular_ speed_ Cu . Describe the motion. (Hint: .

Use--th.e:ener& Consrvation'laW in'-the-Porm (25). where s is arclength
on the hoop)-. .

Choose-coordinates as shown in the

figure, where '0 is the angle the

hoop makfs with the xz-plane and 9

the angle made by the position.

vector X -of the particle -with the
.
downwai4-vertical. For 2 obtain

*,

;5= (a cos 0 sin e3 sin 0 isin,.19.,a cos, el
where a is the radius of the hodp.

. .
Since 11C1 is the constant a ye-,

know that v dt
&X

is perpendicular

to X (Example,11 -5 ). the constant

951
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force N can only act norm ally. to the hoop: To describe /1 introduce
the unit tangent vector to the hoop

t = (cos 0 cos e, sin ca. cos 8 , sin e)
,a

and the unit hormal vector pointing away from the center of the hoop

n = ( cos 0 sin168 sin 0 sin 6 , -cos 8) .

For the third reference vector take the binormal b = t x n given by

= , cos 0 C)
Thus X = at

The constraint force .on the particle can only be exerted normally

to the hoop; 'therefore it can be written in the. form N = pn +.qrS . The
external force is that of gravity, ing = (0,01-mg) . In order to cal-

culate d2r
2 allnd apply. Newton's Second Law, derive the 6relationsdt

tt = w cos 6) tr. ,

411. 4.2b,

co sin ,e b + eft-

bl = w cos els Ca sin On

where the prime denotes differe ntiation with respect to t and we have
used 0' = w From X = an , then p

= ae't + a co sin dr)

Froin-Ner;boirts Second Law, however,..:,

= ( -mg sin el +mg cos tirn)- (13-a-n,4 crt;)

Since -51- has no component in th* direction of b , ±ollows7tiist
Q = 9 . Consequently, on taking the dot product -with X'_ we obtain for ..

the kinetic energy T of the particle,

T2 = mX" X" = -mg a sin 8 el

Thus energy .conservation holds. and the potential is -exactly what it would
be for the stationary hoop.
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-

Finally, ,frbm- 'elle expression for It abbve-; we ..have

,m 2 2 uj 2 2
1" -- a (e= + sin e)

which yields the differential" equation for e

2
51.1(.) cos,' e3 - co

2
sin

2
e`dt

.. , . ,-
with anew constant k.. For lki <1 this motion is '1.1.ear3-Y the

.

/ equation-of periodic oscillation which can Ile analyzed like that

a3the circular
.

endulum. -
or

4 student who wishes-to analyze the possible motions of "the sYteni

may be given the following'hint. There is k fox wb.-A-h e is
constant, provided w is large enough. 'There exist small arriAlitiacle

oscillations about this constant value of e .

14. COnsider a particle moving on a curve I = 7(s) stabject -to 'brie conser-
vation law (25) with a potential of the form

U(s) = A + Bs2 + s3F(s)

where B > 0 and *-he derivative F1 exists and is bounded. Take
-= A +r-Bs2 es an approximation to U(s) near s = 0 . Let the

arcleng-th for the motion under the potential U be given by s =5D(t)
under the potential W .1 by cr = *(t) . Show for- small anap1.11.1de
oscillations that a and s are close together for the half-YcIe
beginning with the initial states 0(0) = 0) Ot > 0 .; 0(0) 0) s 0

The inftitil condition prescribes eq4a1 amplitudes for the two 1:raf?t14)%;

.assuming symmetric about s = Q .

Fi0111 ( 25 ) . have' fOr. the.- two;.motions

(i)
2

(la) := b(a2 1 s2) 4- ce3f(0) - s3f(s)dt

2 b(a2 - a2)

ti

where 'b = and '-f(s.) =.-1- F(s) . The motion
2B ...

- m
harnonid oscillator

t .

To show that the'motion (i) is app4ximately the same as

Law of the Mean to estimate the ex ra term. as follows,

v

tat of

iii), lase the
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where

.1 fds.
, ) b(a2 - s2)[3,.+ g(sn-dt

Al

pr(s) a3f(2) s3f(s)-D[s3f(s) lx=t
=

- s b(Ce S)

where is is some number between a and s . Specifically,

2:
es) 3g f() + g3f*(g)

bta + s)

where 0 <a<g<a. To make Ig(s) 1 less-than some .positive

observe that I" and f are both bounded (f is continuous), hence

13g2f(g) + Ofs(01 <:g2(3if(01 giv(E)i)

< a2(3If(g) I + alft(E) )

where M. is a positive constant independent of g Consequently

ab2Mg(s) < <
;br1/4Ct s)

provided we tate Cr < Nato ally we take a no smaller than we ha.ve-

to ,'and fix.
cb= . Wit < c < 1. we laav-e.

g(s) >41 - Ig(s)1 > 11.7=7:>.1 r c
In either case, IA g(s) -7 lt < c .folloWs t7 t

1.1
tiNo.

.

P.

(1 e)4(0:2 - s2) 14(a,- s2) E1 + g(s)) .1 4(1:22 s2)

atwhere the central quantity in the inequality is -
dt 1°1 kii*

tegrate -and invert the relation between t and s_ to get
e

(tit) a cos + s < a cos - t

Since -cos is a continuous function it is clear that a will approxi-
mate s within any. given tolerance provided e is small enough. An



estimate of the difference'is easily obtained by the Law of the Mean:

a[cos(l + t - cos t] < s - a < Ct[cos(1 - OA. t - cos t]
4

whence

-ac t sin E:2 <-6 - cr < ae t sin gi

1273

where E2 and El define the-appropriate means. It follows at once that

Is - 6 <ac a2mt-< t

where we use the value of a adopted earlier.

slt

1
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Solutions. Ekercises 12-4 \
1. Show that if re. =Z.- in (2) then the trajectory is a straight line. What

information can yqg obtain from" (7) in this case?.

From X x: 511.1 =it we conclude that 5 and are collinear. Thus alldt
tangent lines, to the-trigectory pass through the origin. From tha result

of Example 11-5ti) it follows that the trajectory is a straight line

through the origin. In this case the potential takes the simple form

2
T2 V(p) = E .

ConsequentIyl-if V is continuous, a particle in this case may reach the

origin if its energy is great enough, unlike a particle subject.to (7)

with X4 0 . ,

2. Use (7)or (8) to integrate the. equations of motion for an inversh square .

force. )(Hint: Replace -p

lake 0(o).=-- 1=-4 in (6) to _obtain
3-

Now, with

whence,

(13). becomed

+ constant.
o Aof

. -

MX21 dRN 2
J = E oR -

2

= -

40.

where C2
d4'

.

and we.may m9ppose > . This equation has -
me 7.1T

the solution

or

e - e arcsin (R -±
c me

3 4
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This solution can be put in the- Form (12) by taking 0 = C ,.and-fixing

G
0 2

, -as or -i acco maccording to whether the sign is plus or minus.
- 7

ic

2

3. Verify .-that the semi-minor axis

-

Put (12) in the form

3

00 .=

to obtain the cartesian equation

b of thd Fl lipse (12) is given by

,whence,

t

I;Nanonical form this becomes

ax2+y2 =

Po cos e

2, 2 2. 2 2 2
x - ) 2f3 x_ a y K

.

raK___LO
2

- J y
[maK1.16,2

(a2 02)2 j
ni2.1(14-

0a2 B2)

from which the result follows.

Alternatively, y =0 sin. G 0bserve that

211 - °K2 sin e vanishes -ifde de_ a + p cos e
derivative vanishes.that isi

- 1

or

Set

and only if the numerator of the

(a + p cos e}cos p sing a= 0

AisS -=

cic cos + = 0..

in the 'expression for y to obtain

-951 .11-
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24.

MK2 cx2-22
1 -

Y =

from whichZhe result follows.

.0.

At what height will a satellite of the earth have the same period as the
period of rotation of the earth about its axis? A synchronous satellite
would be placed at this height. For theacceleration of gravityat the
surface of the' earth take

is implicit in the problem that the height constant; hence the

-37 x 108 am .

g = 980 GM
2 8nd:2..or the radius Of the earth,

-sec

t.

orbit is circular and-tEe'Ecluation:-(12) of the orbit reduces to

v = eV. is then,given by (15),.

2 2.2
(ii) v = = a

ma

The speed of motion-
7

To .determine-a.uee (17) to obtain

a. = GMu;

4

= a .

where m the mass of the. earth. Since the-acceleration of gravity.
. is'known.:at 'the sur'faCeof the earth.uie Newtap,17'S Second Law to get

.D.M111
mg =: 2

..where c. .is the_raditls of the earth.
f

in (iii) -encl.-kill to obtain

.

Since 2n radians

8.64 x 10
4
se we ve 2v

---------T-per sec.. From the given data
8.64 x 10'

a3
2

.
et2

g

P 2
= c g result-

ar covered at constant.angular_speed et in 24 hr. or

then,:

:::k.2.X 109 cm.

and the height 'hove the surface:of the earth is

- c-11 3.58

or approximately 221000.mile .

109-cm. 0



What is the e e:velocity-±iE;Mthe earth's face?

.
.

M the text,AEWescape:velocity is -1/ where .c is the radius_of

.. . . . ..

._.....--

. _ _ me
. .

.. ..

mr:the earth. 'Frontthedcrlution or the prededing problem a = c
2
g .

Aeguetly the escape velocity is .

..... .., . .

. . , .c.....,

. 26.13 v s 1 -12X 106 cm
sec

Con-

from :the data given in7NuMber 4., a spedd of abou25,000 miles rer.hOUr.

6: ,Consider'a satellite in a circulaff orbit about the earth. Its retro-
rockets are-fired briefly so that its speed is reduced but its direction
of motion and position are changed negligibly.- Suppose the change of
speed is just enough to '?ring the .satellite to the earth's surface:

_Without-air...resistance, what must the change in speed be and-how long
does. it take the satellite to:reach the earth after them-retrorockets are
fiied?

5.

. -

At the moment the satellite begins its

. descent its velocity is /5erpendicular

to its position vector referred to the

center of the earth (see figure) .

Therefore -t-= 0 and the satellite

must be at, one end of the major axis

of its ellipticalItrajectov. Under

the condition of problethe other
enclo( the major axis, the po t of the .'

orbit closest -Co the enter o the' earth; must be at the earth's surface;

-Thlis tM time of descent s = if the-period for the elliptical trajectory

T sra i"-3/2 riE.,avid is given by (16) as. ,T = = ------ ,If the-height of2 2 a . ..

'orbit above the earth is h and the radius ofthe earth is 'c , then
ha = 4- c . -From (15) thesvelocloty'in .the circular orbit, is-given.1)37:,2 . ? ..

the. circular

2 a
and at the initiation of the elliptical trajectory by"ECE74777

2
=

2a
ra(0 ,

h

2 c)
2cic

m(h c) (h + 2c)

From the solution to Number 4 take a 2gm
descent

.

T.= 2

I

to Obtain for-the time of

N..



and the change in speed

. ...

If ,h is small relative to the radius .c of the earth0. as itIs ..

for maned. orbital flights at this writing, then to' a first appr tion,

Ai .. Iand
'vc -'716.4-- V' c Thus, wittk.s: slight correc on for

T vs. 21 rain...,

, g..
altitude,

7._ Prove if 11

that., of the
0 in (27) the motion of the spherical pendulum reduces to

circular pendulum of .Section 12-3.

.14.

If p. = 0 , then. (27) imp .es 0* 0 .unleSs' r =:" 0 for all t

I'Consequntly, the motion is cOnfined.to a yeitical.plane - 86

Jr f

inder what conditions is the maximum value
: z2 equal to.the minimum"

yalue z1 of .z 4'or the motion of a spherical pendulum? Discuss the
.

motion in this case.

Ili this case z

equilibrium for- (29)

of the "potential."

constant and the motion corresponds to"a stable
This will ocui- when' - E the iimvale u

...in this case r = z2 - is, 'dons:be/It. Hence;
from (27), et = the pai-tiCierfoves tt.toanc1 t12. e the .hori-
zontal plane i.: z at constant Speed

_ . . :.

,:1

-
. What is the motion of the pendulum when z =0 ?

is 'xipt convenient for the study of thiS motion) . .

From (210,, angular momentum is conserved and the motion is planar. Set
; X x x x = and put x = -(0000k) , X = (. cos 9 .8 sin 9, .0) Then

2 =-1C Thus el is constant and the particle moves on a great circle-

wi h constant speed.

`Equation (29)

10. Determine the magnitude ofthe --force of constraint XX in (22)
,



From Newton's equation of motion .(22

7tx = -
whence,

X22 = X 17

= :+41:1.E;

2
= ni(g. "'

A.(x .Tory m pl* 12dt
=,.. .xf 0 and. this- equation becom9Since I - is constanq, X

where

%I.
2

=,-mgz + mv2

.'Consequently, ±'(:)/- the constraint force

Ili -21%1 = Eh?

Also,- -- may be takenfrom (23)
1111 111' 23s - 3gz f i

gzI.

= -2gz + 2k to give.;

Solutions MiscellaneousExercises

. ..Show that an.'object t_hrown with an-upward:.cOmPonent into a resisting
atmosp'here-'mu,st- come down to -thesame level at .a, speed -less. tlgrt its

speed:,

A -force of resistance, opposes the motion.. Therefore it has the-7fo=

=
r

_Rxt

where R >.0 . The particular form of the resistance coefficient as a
4 .

function of t 1, X , X', or .whatever, does not matter. From Newton's
Second Law

(i) mg RX

3b.Choose coordinates so -that 2: = (010,..b-g) . Take the 'ds>t product with XIe
'in (iY and-integrate from t0 to 41 where

get 4
t
1 is time of return,-to

Ry. dt

_where v and v are the initial and to speeds, respectively.
Since zi = zo and the integrand positive, the result follows at once.



2 ( if the angular momerrtum
-force is a central" force.

. . .

By hypothesis,
4

,f 'par-tat-ces conserved -then'the

51

m(x 11) . = mK

where K is a constant vector. Differentiate with`respect to t

to obtain

5"( x Zt

from which it follows -that is collinear

net force F = la" is a central force*

. .

with X . enCe the

-(b.)- :Prove that a partiCle,obeying Kepler's first two laws is subject
to an inverse, square fcirce.'.'

. .
e

.

From.-the 'law-that equal areas are swept out* in equal times we know

that angular.:momentum is ccinServed--and- by Part (a)- the force' -6

central force.' Since the path is an.. ellipse with a focus at the.

':origin we have: for the equatiem.-Or- the in:poiarforM- .

A -1-- B cos. e . ,
.. .

Stilen ti:ie..motion. is plane; take X = p (Cos.: esiti 9
X' (cos .e sin e) pel (=sin, e cos 9) ., .

and obtain

Since conservation of momentum .holds, Equation (5) of Section. 12-14-
may be. applied; thus take

ii3
k 2 -.5.

and obtain .

= pt(coS e sin e) pIS-(7sin e - cos .e)

joy ditzfeentiate, again to get

5111 ( 021 -
P

01)(cos 9 sin e)+(pleit--N)(:s e, cos e) .

-Apply



follows that, the central.--force is determined -by XL where

XX .-F = 0 so that
121:

X. = m(p"
3

g
In order. to calculate IF I , from (i) we must change the time derivative

in (2) to a derivative with respeCt to e . From (ii)

( iv).
K c:1J1)

de
p2

de de `pi-

Differentiateagain and apply (ii), as follows,

at t.
#42

K2 .s1L.(1)-Ket 7107(-e =
p de2 `.-*/

.

.

Formula (v) may also be obtained iziy putting the expression' (4:t)..f07
.

in Equation (7) of Section 12-14- and differentiating with .respeCt to p

FroM Fo (5) we can calculate the .oentral force given any. orbit.

particular for .theorbit (i).

which Is the inverse. square law.

3.: Shbw how the ele.ctric and magnetic field vectors En and B of Section
.....

k .2.2-2(iii) must be modified to account for the motion of a charged particle
--in a coordinate frame which moves in translation Til.th respect to the
inertial frame with constant velocity if. .

Let the position vector of the particle in the.movingframe be X .

. .

Then"

(i)

and, hence,

2Fe dX
=dt`9 dt-9:

963



New-tbnis Second Law in the moving frame2is then obtained.from (26) in the

form

°Further, from (i)

: daar
,dt

qLR't: dt

.3.46
dX

7 x .

'= X -tu.,

where the initial position of the particle (t = 0) is taken at the

origin in both .the moving..and- the inertial frames. From (iii) we see

that th motion may. still be resolved into straight _line and circular

components with the vector -tu added to the linear component. Since

the circular component of tizte motion is unaffected the magnitude and

direction of the magnetic vector B- should by the same in the moving
frame as in the inertial frame. ConsequentlY., the Lorentz force .in :the
moving frame is expressed in the form of (i) by

ciEt dX t) x It] = care + dt X
clt

:Where the eledtric vector E : and .magnetic.,vector BB are defined -in

the moving frame by

E -= E -,u x B B =.B

4. The pith of an :object attracted. by a central. force is a circle and.the
Center of force is on the circle. Show that the force law ta.. an inverse'

fifth power. law-,7F 24* and show that the speed is proportional to

P12

Choose cacirdinates as indicated. in

the accompanying. figure.,.. If the .

radius-oe,the ci-rcle is a , then

.p a sin e' , and

.=--p(cos e , sin e)

a(si,n a cos e sing e)

si31.2t9 cos .:260

Now differentiate twice to-obtain ".



X' = 91 (cos 28-, Sin 29)
r

5E" a(8" cos 26 -29'2 Etta 29 , 9" sin 29 + 29' .cos 26) .

or

(ii)
From (5) of Section 12-4, .

P.'

F
121

Irk-Se
.sin e

= sin 49" sin 28n- 28'2(cos 29 - 1) 19

then

2mare" cos 6 - 29,2 sin 0].

el = -2
OP

whence

Since

8
3 de

andwith the use of (i11),... get

2a.K2.-

Ent (iii) and (iv) in (ii) to get
,...[ea cost u

P5

Since A2 cos2 8 =
yields

cos e

2a1C .sin e
. P

2- 2 . 2sin 8

kl = 4maPie

PS

a sin 8 = p this

Aiternatively,, use-.-(v) from the- s.olution-of Number 2(b) to get p.
directly 'and so. obtain the inverse .fifttilpdwer force.

iror.:the speedpbserve from (i) and (iii) that:

= ,2a I el

which is the desired resin



Let the path.of---a--partiCle be :given by' X:=. Vs) where s ie.

arclength. Define the tangent t and principal normal iS by

'11=1(S) ii400101. =:'Kft wherl the sign of the curvature -K is

dtnonnegative (as in Mcercises 11-60 No. 19), . -Let--- and
dt

a dt
-dv

be respectively,:the speed and acceleration along the curve.

Show that-the force on the particle is F = mdt. 4 mKv2

For the velocity and aCceleretion vectors we have
H7

c12 ds- dX
dt 7 dt ds

= vt

and

,d2.5Z av 'cis d.,
d2 at dt ds

from which the result is immediate.

kv'2 2.1.-

(b) Use the result of Part (a) to derive the inverse fifth power law
in Number 4.

IntroduCe the central angle 0

as a parameter. Thus 0 = 249.

where -6 is the paraMeter,in

Number 4. We have from s = a0
de de

v = a -d-t- = 2a c- ,

.2!1a-= a = 2a 2- . Use (5)
-dt ". dt

"og Section 12-4to obtain, as

.in Number 4,

Then

d26 2K2dB
2 .= 5

cos a -.

v =
2.e.K

=
5

cos e



- .

. 2. 2' [J_6a2K14 16a K14. cos e4
P = In- 8 10

P : P

/

-where at the last, step put p2
result agrees with Number. 4.

16m2a21(11. 2 2 2
e]rfp ÷ a cosioP,

. 4116m2 -a Kit.

10
P

in the bra-eke-G. Vie

12-M

/Consider a rocket which is to lift a payload of mass MI De-711±11-351e the[amount of fuel relative to payload necessary. to reach esce.pe
One minute from the. earth given an exhaust velocity . = 2.x'3-c see
and_a constant rate of fuel co-xlumption. Neglect.air resistance.

In the notation of Section 12-2(iv) the time to reach escape
.33.1is = = 60 sec. where .m..1 =M; From. the soluti.m

Exercises 12 -2, Number 2(10.1 Equation (i), -when the fuel is totAaly
slimed the Velocity- is .-

(i) . = --t ve log (1 + --7) .

Take the escape velocity v = inrg = 1..16 x )6 sec
cm from t.le SolutiontiSolution

of Exercises 32-4, NuMber 5 to obtain

-1-12-C7g gt

z 1140
I'

The data given are approximately -those of .the German V-2' rockets of
World War II: ''The best that can be done to-reduce the ratio of l'uel
to paylOad by shortening the time (take t = 0) yields a ratio
330 . Clearly, the way to great "improvement is to increase' tke exbalst
velocity. For this the combustion chemistry of the prOpelle.nt .117Cl.:)111P3
an important factor.
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'TC13-1 Introduction.
r

Teacher' 0 Commentary.'

Chapter 13

ANALYSIS

13-I

The purpae of this chapter is not numerical computation as such, but

analysis of algorithms or methods of computation. The ability to compose

algorithms for electrohic computation is a'skill in great dethand nowadays.

As the matbematical, scientific, and technological questions/we ask-of
an?../-

com-

puters probe more deeply, the standard routines of the programmer become l ess

adequate and analytical skill plays a.'much larger role. In sparing us the

mental effort of mechanical arithmetic electronic comRutation has.given us

more-time to devote to non-routine analytical questions, 'but it has also

given rise :to a, wealth of new analytical probleme...

Time-sharing systems make computers available to a growing number of

students (sometimes as early as sixth grade) for their lengthcalculations.

BY writing their own programs, these students are developing analytical in-
.

sights formerly Undeveloped until the undergraduate years..

The central _section of this chapter is Section 13-3, Taylor's' Theorem
-

with Remainder. It sharbens Ideas developed earlier'in the text and it is

invaluable for future apalcations.. Taylor's Theorem is undoubtedly the

single most important method of error estimation,

Many of the numerical examples and exercises analyzed in this chapter

stem-from earlier discussions (e.g., compare Section 8-6 (113) with Section

-.13-4 (16), or Exerci;es q-m, No 11 with' Section 13-4 (9)/"="

Solutions Exercises 13-1:

) Obtain n-a method for computing the square root of Ipositive -umber
tojwithln:any:prescrlbed.tolerance e -Obtain estimates to
determine at what ,stage the process may be brought to an end.,

tr e the given method to obtain IT accurate to 5.- significant
figure

(b)

.



There is no end of possible answers..to this- question. Here we give.

two sophisticated methods, first the scheme commonly- taught in arithmetic

courses, next an "origin:" scheme Thig problem illustrates what may be

involved in calculating values of _the square roots. for the evaluation of

the integral. 1: in Equation (1)

Let s be the 1.lb-esti' lower -edtimate .to 167 -te

figures; that is, . has the decimal representatibn

=facelOk al10k -1 -I- 7. . ± a ja-Ok".j

where a0 A o , and .s0 must satisfy the .condition

s
2

10k -4J)< x < ( s
-7.

gnificant

Now suppose we wish to determine the bed.--eIol.rer estimate to one more
We require

)2
=1 4' +110k-i

.4° < x

-Hence for 2
s we must haveX

Thus

2aj 'j
_l

+ a
j+1

100k -j -1
. +1 s

j
10 .

must satisfy

k-j-
2 j÷isil.0 .

i
.< iv

< -1-3)--
a4+1 -- 2si

In the light of (11) we try 1101.+1 =
2s as a candidate for a

j+1 .

If this figure is too large- to satisfy (i) we try the digits 'in descending

order from b ' until we reach one which satisfies -,(1.) .

The. error ..: .

-47 - s. is Iess"than JOk-j and we need only take

j
.

(Ienough st to make 10k- <7< e , or- i k + logio )
- -. -

970

..I 7



3.3-1

We exhibit the .usual way-.0f2aaAng but.the computation for ,

.redundant merO digits 'are Omitted. It Is easily verified f x . is

written in -bas 00 that s represents the .best- lower decimal approxi-

mation to 4:7 where - is taken as x to five significant figures in

base 100 . Thus the computation 'is arranged by grou Ing the digits of x

'Ira pairs as though 7x7were written to 100 : In the following

labeled computation ;the SymbOl [a
0
a
1
a
2 ... ak ) represents decimal place

numeration, not a product.

v
7 00 00 00

4 a2a0 =
0

z r0 ' bl =EA =
3 00 30

-'- g

. 3. 29

-3 00:

2 76

24 00

20 96

04 00

64 25a5

39 75 00

a4 7 37 06 49

This yields s =.2.6457

7

E20a0
-I-

1b' lb1 ' b
1 > a, try again %

r
0 '

b
1,

= 6

E20a
0

4- 7b4(-1 ]b*
1

(12401
rl "- 2 ii. 52 J

(20(a a l 4-'b lb01. 2 2

r2 3' 7- '3r.1; [fE30401) ':
. E20(8.042) -I- b3 ]b3

.r ..

5
, ---b -: [a7211 = .7

[2Ofeloalazy -I- bii]bli..

e. For the second method, let a be the first signigicant digit of

Then 1 <i_00 i02k 4- a0 forSet Ax
= x

1.02k

"1)7 as above.

simplicit,Y. It is 'Clearly sufficient for the approximation to ,

since we need only multiply by 10 to approximate to the same

number of significant figures. Take whichever integer a0 or 1 A- a0
tihich has the closer square to A and denote it by zi' . Set

. ,

where for the absolute error -we have

I 4 6.

< . Now form: the-k-th power



Pk qk'N" to

Now set . -We have*
qk

Note that under -the. conditions on A and z1 1 i A" 2: 1 and :-zi > 1.."-:

Since t5e binomial coefficients are natural numbers, hende no less than :,

1 ., it follows that qi.> 1 - Sinee ai -4 1 it follows from (1) that
the er-ror can made less gthan an glven tolerance by takVg ;k. suffi-:.

.- . .ciently large.

We would like a. rough estimate for the absolute error ak so that
Ile may determine k . It is important to realize that the effort of

justitying:an error estimate rigorously may be disproportionate to the, -

end achieved. -Here we use a -nonr-igorous ,approaCh; but a rigorous

mate can -be obtained so.the inictial lack of rigOr will not weaken the
conoldslian. Suppose.' is a reasonably good aPproxima-blion to 1A- so "..,
that . t

. .

E`2r-i-1``

)riA-)2r(..itt)k-2r-1

r=0

vE k
`21-1-1

_The sum in this expression. is the sum of every- other binomial coefficient9. .

so we guess that it is approximately half the total of all the binomial

coefficients, that is, .about a
-2- this is actnplify the exact value of

the sum). ,Thus we obtain go (2-(A)
k

and hence from (1)',
.



0

O

Now let. ,method to calculate

2.z-1 .

tonsequintliy- (1).

Note also

: the
inequality

= lff) + = 2

2

3 +
A 2

Cel.<5

Take z1 =. 3 . From

and since > 2 ,

> 5 -°!.
a

111) and (1 ) in (ii) to get the conjectu red as

-We wi-sh to, make--c lesi than - 104 and fcrom our conjecture. this will
- . . ..._

k ,.
"4 2 ,.

occur if k is sufficiently lar
.

to make < --7 . This last
5 ... 10

.inequality holds first for k = 5 ., Now, we obtain pk and

. . .

namely,

q51f = (3

p5:= .35,+1ox7X
q5= x34 +10x.7x3.

From this result and (ill) we

fa).5 1
`45 51 1084

It follows that

approximates -

x 72 x 3 2868

72 1084 .

obtain for the absolute

(1)5 1
2' -1000 32000

z = = 2.6457 .
q=

accurately -to five

973

error in

sificant figures.

1 0

qk from



a

.

2. The idea of using Rieman sums to approximate' Integral. I give by
Equation (1) has -led us .1n-to-food-mai complications. In such an approxi-
mation, the Integran4 'IS :approximdted by piecewise constant functions-.
lise a. little more ingenuity in approximating the integrand and obtain
upper and: lower estimates for I . '. (Hint: note that

. ,

y/2 Tr /2 -XP!'
d* .tt and use estimates for cos an& sin-

x 71;777 o V7371.-747_ --

obtained from Example 7-5 (1) ) . )

Observe that'

= d*.

a ' JO : '..:413:717 JO .J./a.

and estimate, the two integrals separately.. Since 0 <'4r < f we hive
from the results of Example 7-5b,

*2 . 2' 2 11 2cos *< 1
2 1

<1 - .

Coupling -his with the lower estimate for cos *', we have second degree

estimate's for cos *

(ii)

Similarly, with
0

2
1 - 2 . < cos * <

,-,we obtain first degree est' tes for sin

(ill)

Next, integrate. from

second integral in
5

5 < sin IV .<

A4---arcsin 41/2711 4 24

( ) to 'Obtain the Festimates for the

< arcsin
0 c 4

der

Sacrifice' a !little in this inequalitY'DY using the: ineg ality for ai-ssih
. .. .

...,-derived from

't
to obtain.-.46,

. x < arcsin x <
5



FOr the second integral in (i) obtain on integrating from 0 to
.(iii),

. Ai,
.

. ir/4
(v) - A T < 2117 i< 21-- < -2177 -/-6 <7 5 .

O sin Iv

- r, Add (i. and .(Nr) to get
-

2-5 < 7 + '67 < I io lc- 12
lt < -11- x < .9 .

a.
1.



TC13-2.

'A geometrical picture-of an scheme may help make the
-,

eit more

_Figure TC13-g2a
.

.._. Dram. the graphs y .= 0(x) apd y.i x'',". {Figure TC11-2zi). From om ,the. poin-t- ,
.

: Ca a y wherelire a = 0(a ) -proceed horizontally to the .gra.ph y ----7-.-x-.-7thexice
-.. .0/. 1- . .1 7 0 ,F . - . .

. A-yerii6ally -t'o,tlie -graph, y-.=-- 0(x) and repeat'the.prooedure 'ai indicated in .:._
. -the figUre. For an a_lternatIng- scheme (i3erciseis .13-2, No.0-2) the gOometriC.al..

. .. .,
Procedure follows a spir (Figure TC1321,3)

:= x

y

e

I

#*

'

0° a1)

ir

proofproof of .Theorem 13 -2 re ires the Lesst-UPper. Bound .Princip1e.(Appendilc
.

-."-- . "4,
, - -

976



. Devise. an iterat
Show how to
verges aid ve

Solutions Exercises 13-2

ra-3-2

.....

to approximate for any positive A . .

ial estimate for .;LE so that the sCheme con
error can be brought belov.any given:-tolerance.

or the solution of f(x) = x2-- -Al= 0 , namely

1 2
2ak(ak - A)

If ek .=

a

- /A- then

ek+1 ak-1

1)
ak

-
a

ek 4- 1%r)(lc IK -+ A

-`. -
+

2
ek.

2(ek JA-.)

ek

If ek > 0 it follows that 0 < ek_a < ; thus the error is cut

leas in half at each stage.. To guarantee convergence it is there ore
.

sufficient to take a > /A- . The scheme is then monotone, that the
0

S

iterants decreaSe.. Now, for a more accurate idea of 't rate

t .a is an upper estimate 'for 4/17. _accurate

1-emetaber that S.\\shift .in decimal point
eme of A by 100PA so the inequality

7

Lstriction). Ma that case .0 < ek 2
< 10n

convergwace, suppose 'tha

to n decimal places and

in' ,, amounts -68 the r

> 1 is not an important

Consequently,

A

-.Thus 'the. number. or accurate decimal places

i-tera:tion,

_ .

s at least doubled at each
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2. (a) An iteration, scheme is called alternating if the error charRps signpt. each iteKration. Since any two consecutive iterants approximatethe solution from above and beloW, the value of an alternatingscheme is that it permits an estimate of the error without a separateerror analysis. Find a. sufficient condition that a convergent itera-tion scheme be alternating.

Let a = 0(a) be the solution of (3) to be approximated. If the
iteration scheme (JO is alternating then ek+1 < 0 . But,ek

. -

ek 40(81k)
v7 0(a) 8 (

ek -ak a ak -t
where Ek lies between a and ak. Thus if 0 has a negativea

'-derivative in some neighborhood of a the schema 3s alternating if
the iterants lie in the given neighborhood.

-(b) Construct convergent alterniating scheme for calculating .

Consider f (3) of the form f : x --+ x2 - A to obtain
(x) = nx + etx2 , A) .

In order .to guarantee convergence. In a neighborhood. of 1A require
.-1 < 0* (-a). <1 , and to make the scheine alternating, require

0= < 0 . From the .two., conditions on 0' (1A) obtain
<.1 + 2c,rA .< 0

or-

c
./.

.2'1E.

(c) Use tile alternating scheme '.obtStned in..Part (b)accuilatelyto twodecilial places .

Frain: (1)"
Y .h- to choose c so. as to:satisty

C.

For rapidity of convergence
lower value as convenient.
For 0 in (5) given. by.. f
iteration --.scheme is then.

0_

2-c .

we would
9

Thus

to calculate

-like ,c2

we-- choose c2
to be as close to
,;1 1= and cs.=

2 - 9.x -.3 and g(x) F c the
.

3

the



2

3

Observe that 0e( ) 1 < O. for Take the latial
3 .

2

. akapproximation as a = From +1 ak + 1

ak
2 obtain
2 3

7succespively 1.5 , al = ='2-75 , a2 = = 1.729 .:. ,

a4 = 1.732 ... . Since I lies between a
2

and a4 we conclude

that 1-3-sis 1.73 accurately to -two decimal places.

Obtain an iteration scheme for '14E , deMonstrate convergence, and
estimate the error in the k-th iterant.

USe Bewtones-blethod 4por f(x) = xn - A = 0 . Then

-
0(x) = f:) ? X.-

xn

n-1
A

nx

= (1 - i)x + n-1 -.-

nx-
'

.Set a = . Then

ek+1 7ak+1 a =.ek
(alr- a

nak

oW,Trom the tangent approximation, Section 5-7,-we have

an = ak:1 + mairta. .e:k

2
where ',,kk ak)? an :upper. bound on

d
j for

4C between a and ak . Enter (ii) in (i) to.obtatm..

- 1)e-2'(iii) I eloa 1 - 1)E..
3:11==:%, :

na
n-1

net- an-1

'fOr-.E = max[ak,a) (we may assume 0.:;since4-8.11 iterants will be

positive if- a0 0..). Since we expect. g = a, the bound on le l.I
givren, by .(iii) should .be_ approximately a11.-137a: and this is usually

good. ,enai4gh for pradticalpurposes.-
.. . .
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. 4 . ( ) Prove the following-theorem. :.Suppose f(s) =4:0,1 Ir-1" -.has two
Continuous derivatives on a neighborhOod. of -a and if f!(a) 0
thenNewtonls Me:0204_(l4) converges. if the initial- est1mate.is.
sufficiently close-to a . (Hint: use the e-LaW of'the Mean:twice
to approximate f(ak) as for the tangent approximation, Section 5-7).

Show that Newton!s Method is monotone (the error has constant sign).
if in addiiion to the conditions of Part (a); f"(ai

:Since f(a) = , it follows from the Law of the Mean that

f( f(ak) - f(a) = fi(u)(ak )

f/(ak)(ak-- a) +.[±7(u) f7(ak)](ak -.a)

=-1"(ak)(ak a) e(v)(ak u)(ak a)

where' u lies between a and ak and v lies between u and
Consequently, fr0m (14),

hence

(i)

f(ak)
e
k-1-1

_
a YT.a707

sk
(ak)eit f".(v) (ak

fl(ak)

f"(v)
0_ek- f2(ak) ek(ak

Now, since f'(a) 0. there is a neighborhood of a where
i !Ca) .(x)! . Furthermore, f" is Tcontinuata.aralam-a neighbor-.

hood of Sr, there is a neighborhood where e 1S-bouncledx if"(x)1 <14
Furt)iermca'e lak - ul < lek! . Let 8 be the radius of the7smaller'oP...
these neighborhoods. It follows, for ak within the 8-neighborhood of
a , that

::1224 .where .]7-5-7. . 'For,-conveisence we need only guarantee that

ek+11 _...

-.....-,--7- .- r -< . for some cons tant. r
1

*
1. . For this it -is suffiCient to

. . ..ek.
choose an sO that Ie. <-Min ["=-70 . K
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To prollre Part_.(7;i.:Observe, that sgn(ak - sgn(a.k - 'a) = sgnek

. fu(v) f" a)
Consequently, sgn eic+i. = Sg12 177.1: dgn fi rii..,)

l'or ak- sufficiently

close to.- a . Thus the sign of the error is constant okce it
J

below some sufficiently small bound. -

After we 'have proved Taylorts Theorem (Section 13-3).it will be

falls

possible to relax the 'conditions f*(a) 0 and f"(a)' # 0 employed

In this exercise.

Obtain the greatest zero of f to 3 decimal laces, .here

s. (a) 7f(x) = x6 6x.- 9;.t

Since f(1): =:-2

interval .(1,2)

the root is.unique

Sao
if(2). = .there is a root a in the open

Fur...thermore, since f is increasing for x .> 0
0-

.and it is the largest root. Use

f* (1;) 6a5. 6(4
-6a
a ij

Sin.ce-we expect -a ar 1
iu -(1154:

1 6aiti 2V(!lt. 6a4i.

9 .+.38ak ak
- 24

Take ao = 1 and obtain., . successively, a1 = 1.08 , a2 f* 1.12 ,

a ss- 1.13 . At this point it may be worthwhile -to re-estimate
3

rt(a) using a' re 1.13 . With this approximation; obtain.

and c

6) = T(9-- 5a) or 18

118- Then use

9 ÷

ak+1

for the next _epirc:Sximations,

k > 3/

= 1.1380. -
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-To-, conclude the computation try anexpedient-Ahe successive
iteranta are increasing. We expect that 1.138 is close'to the

tdesired accuracy. :To .thetk this, on the-assuMPtion that the
:iteration schime 14 monotone .for a6 = 1.-1385...
Then a7 = 1.1380 ..a6 Thus -'1..1385 is presumably an 'over-,
estimate and, to three decimal places-, Ia..= 1.138 . The assumptions'
made above can be verified, -as some students may wish to do." The
point, however, is that in

be established between the

effort required for proof.

any practical - situation a balance has to

need for confidence in a result and the

_Empirically obtained answers should not
be aimed in appropriate-situations."

(b) . t(x) ;

Since f(2) = -2 , f(3) = 1 and f is increasing for x>'-2 (from
ft(x)_= (3x '- 2)(x - 2)) it follows that the largest root a is
the one root in the open. interval (2,3) -px.obably with a closer
to 3 than to 2 . Use-iewtons Method

ak +l .= ak

3 2ak - 4ak + 4ftk 2_

--8ak +.4

with a0 = 3 . Than. -_al = 3 - 7 = 2.86 a2 m 2,84 ,.a3
2 .8396 ,a4-= 2.8394..' To conclude the'larocess as -in Part (.a) tr3v-.

a5 = 2.839 and obtain a6 = 2.8392 >a
5 To-three decimal places

we have a
5

2..839- 7

.

t'ollOW the -merthod of Example' 132b. The desired root lies in
. .

'presumably closer -60 . With x = 1 u obtain for small

16

- 1

N

.(i) f(x) - X 1 (1.+ .11.)
16 /

+or 16 + 120u 560U2x

Thus:as an initial estimate for the solution
16 + 120u. +- 560u2 + ... 7.48'. Ignore :tams

degree, ;to obtain as a first. estimate 7 <:u0

1,2) ,

take -u Satisfying

higher than second.

<.; ..Take uc;-=?.?



8ao = . Multiply in .f(x) = by- x - 1 to obtain

48x-4. 47 =.0.

(JA) = 16a15 - 48

16
16077 - 3)

16(45.- .

For the iteration scheme, take

16ak - 48ak ,+ 47
ak+1 ak '16(45 ;14')

ak

Obtain successively, a0 = 1.14 1.134 , a2 = 1.134 so that

no further improvement is obtained at this level of accuracy.
.

6. Show if the iteration sateme,. (:11-): converges to'a number a
of 0 , and if a is a poln-of,Contirrizity7of ' 0 , that
tion of (3); that is, (a) ,=. a_ .--

From the continuity of 0 we know that for"-any-error tolerance c ,
,---.....,----

we may ensure j0(x) - 0(a)1, < e .by' requiring_ 1,x - al < B for some

positive 8 . Since the iteration scheme converges we also have
,

lak -.al < e for all suficiently large k , say k > M . Choose

.= Minfe ,S)

condition,
-1111*-

- Then lak+1

j0(ak) 0(a) J <

rak-a 7

I < B whence, by the continuity

but, by the convergence condition,

193.(ak)

It follows. that . -

156(a) 5,-.10(a). 0(ak) 1 + 10(ak - al

< te .

Thus 10(e) - al. is less than any.positive number, hence Must be .zero.

Verify the error; estimate -.(17) in the Picard iteration scheme for. a
ieparable equation. under the. conditions of Theorem 13-2.

1
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.

- 1For simplicity, =r g yin k17T. Let Q be an upper bound for
gl (y) on a .neigh.borhood of .y0 , say 1 g (y) < Q for'- y01 < 13-

Chooser a so that: the- solution u (which is continuous since ft is
differentiable) differs from yo. by less than/ f3 for Ix - x01 < a
and let P- be the maximum of 1f(301 when lzc - xol < a . 'Set M = PQ
Then for Ix - x01 < a we have (x) yoi <13 and we may take =
For the first iterant we have

= ul(x) - u(x)'=

?,c0
f() E13(7.°)

eu(0) ]dt

Hence, i'
J.

< a

i(x) - xj..;)M13 .

-11-(oldg-

:,.Now we may replace a above by any smaller positive number without
violating any condition already r quired(In particular, we may suppose
ex < -2--- Then, le (x)1 < E2M 1 we may take El = . Observe that for

- x01 < a we have

lua(x) - yor <- lui(x) - u(x)1

<L+E.< R
2. 2

so that u1(x) and u(x) are both in ,the,. 13 -neighborhoOd of y0
'COnsequently -we may still use the upper bbund Q for [gs in

e2(3) jr f(i)gt(T1)1121(°.- 171(0idg
0

to-- obtain.

2(E)1 <cmci <

1112(x) zrol < 1u2( x)

For the k-th ite obtain, inductively,

981.



(x) yoi < luk(x) (x)

Thus thei-:pconditions

each iteration...

< <

for obtaining the\

) Yo

.13-2: _

(k -> 1)- .

necessary bounds ar tisfied for

Consider -the differential equation 14.x`.".- which has more than one
solution- u : satisfying the initial condition u(x) = 0 at

x= 0, for example, u qrx -4 x 'and. u
13-2, how can -this be possible?.

.

4 0 . In view of Theorem

The conditions of the theorem are not satisfied. With f : x 2x
g : y , observe that gt- is not bounded in any neighborhood of

x = 0 . Consequently, there is no reason to expect t

uniqUe. Compare TU10-9, p. 778

- 4-

lution to be

5
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TC13-3. Tayloits Theorem.

The,text.uses the simplest poSsible approach, for US, to tihe,TaylOr
approxima'eliin,theorem. The estimate of remainder is the one most

.

:jcbtemanly used.in-practidal problems and is 'easily obtained by the device of

-repeated integration which the student has already.seen in Chapter.8.
.i- .

the important theoreins covered in the exercises,-we have for proofth
ov

--.exact forms of the remainder, the Cauchy, Lagrange, and integral remainders
of Numbers 8 and 9. The integral remainder is the only explicit. one, since

the others involve arguments.of'? .known only to exist by the Law of.the,
-Mean or the Mean-1±Ue Theorem.- These exact. forms are ,quite useful in

theoretical illestigations, the Lagrange form being the one most often em-

countered:' In establishing error estimates for the integrat on formnla'Of
Section 13-4 (Solution to Exercises 13-4, No. 5) we have used he integral
form of the remainder. In Number.9(c) the Cauchy, remainder a used to

establish-the convergence of-the power series'forarc sin x , when .

It isaConven-tional.text problem_to_us-e:the CaUdhy remainder to prove -eon

=vergence for-the--general binomial:expansion. of (-÷ x)e- to -(1.4.,x) when
Ixi < 1 and this would seem to be.its most significant use: .iirowevery the

rapidity of tonVergence.and radius of convergence (but not convergence to the
function) for :the bin;omial series are-most-easily found by the Ratio -Test of:-
Chapter 14,=so it does not seem worthwhile to stress the Cauchy remainder-
(-See,Exercises 14-M, No. 13.)

Solutions Exercises:13-3

1. How many. terms of the Taylor expansion of "if-77Z inthe neighborhood

x = 0 should be used to give -.PT= -137774ii accurately to five
imal places?

For x -7-77 obtain

1

2(1 - x)3/2

1.3
22(1

- -x)512

(k)

21t-10_ .4(2k71)/2-



'`

Since f(k) ) :is a nega4ve decreasing- function. we

60 1 3 .5 - - (2k )3 )

2k-1(1 (2k-1)/2
"- ;V

Consequently, the error in taking f
xi d

(k = n + 1),.

(i)

.Ignore
the: coefficient of

, 1 1 3 - 5 (2n - 1)
;.Z7 2 4 6 2n

(610,n+1

an' error. less than.
.

.

-

404.).n+17 26n4.:.6 220 ->'106 > 2

-for

-11

C
13-3

have for O < x < 3E

1 ,-
satisfies

112n+1'.
1

;7' .
(64)n+1

for a first estimate

n.- 'so "that

. where we use 210 = 1024' ThUs,

for the upper' es-bird-ate In -(1.)

1

ry n

.

o-

x 105 j.

= 3

1 . 2 ) < "1

y. °

Since -we want

. For- .n

22- 2 xI07

yhich 'yields seven decimal place accuracy.
. -

:for round-off error.

r

. Obtain to thitee decimal place accuracy:

Use 9 = 8 1 to obtain

3-rg = 2

= 3' obtain

his, no allowance is made

. and expand,;' 2(1 t X)ii. in. the :neighborhood of x = 0 to enough terms
to obstaiii the desired accuracy. For f : x --> (1 + x)13

f*()
2'

3(1 4=---77-775

3?(I x).40

20.

' a 53 (1 xiA/3
f °(x)

V12 is decreasing on [ , Therefore take

987

i
s4

- 3



2

1

Thi4s.the Aired accuracy as Obtalped for n

3

1<

=. 2;

1/-9- = 2(1-1-2 _ 5-e
2.080

tan 100 accurately to 5 decimal places.

.For* f x tan x obtain the su.cessiVe derivatives

Consqutnt1 y7,

where, for cos x

ft(x) = 1
cos2 x
2-sin x
cos3 x

. 2 cos x - 6 -s1.2x cos x
.4cos x

6
. cos2 x

tan x = x

let" (x)

L

.

aa.

to-



rtFor ?c = he .'error
to the gesired accuracy

x is at most 10

.01000 .

3

-Gyre .the third order Taylor polynomial at x = a in each f-ollowing
Obtain a foitiula for .the general -term if you perceive the pattern.(a) A , a- 0

1/2 1,_ _
y =.(1 + ._*) y2 =-04; + x

Iff. 1. 3: .,1 + ,c15/2 :-Y
_

'--..,..f 2 i
0 .... ,

Y
.(k) 1)k+If 1 .3 . 5_ . : . k - 3) icr

It '

-.1/2

Thus,

case.

yit , I L3/2

k >-40 . Consequently,

x2 :x3

576"
Y = 1

..1 3 5
-2k=1

k÷1(2k= 1 ÷
k 2

b 2 - a := 0

24r--1)
.

4.

, where

2k - 3)] xk-
It!

mit

.

Replace,: x by x in the sauticin: of Prt (

3x
6

Y -1-3/ -"Er

To justify this.procedure see. _Number 7.

a .= 0

Take the deriAratives from the solution. of Number -3 "co obtain

- -r

_tan X.= x s

989



-6...sin' x, sin
=7"; 7!-777-----

Le et ,cos

1 sr .(e) - a =sin x 2- 2

dr6s;rve that sin x 2
to obtain cria-

or

and use the solution of Part (d)

.For justification,- see Number

(f) log x -

1: has '2
X

9
-

's7 2
' DC:

log x = -;

".Compare tiaisreS:41-t:14thithat6IC Exercises 8 -2, Number 6(a) .
Y -

a =

k- k(x -/) 1) x1
--- k

. -

.

(g)
x

.

Take tiae'derivatives from the solution of Part (a) to obtain for



ObserVe ti.. at :for -x" >.

(i) li-x3 + 7x2 2x

Note that 1R4'(x) -= '0 for all: 'x . Consequeiita,y 'the tlalid -order

Taylor polynomial is an exact representation .

- . .. ,. .
42 ,-* , .,2x- + 7x + 2x + 5 = o -.5k-x 4- 1) + 14-(x +

(-.1) -1-tig cos x .2 8 = 0

Observe that D log _Pei x = -tan x and

2log aes x- +

(a) tpraplete the proof of Theorem.13-3 by induction for b .>
case b = a is trivial.

-

For n = 0 the theorem -state's

where

4,f(b) = f(a) Rotb)



'This. result: has 'aire.ady.been proved: in the text aa.-:(-6).w
t

::As conaequence,-. for. t a yb .1Ik `tt:

(S):7:: = .r(a) t..Rcict)

since, the same bound Mi. holds for f(x) I on faIt.3 1 as on -the,

larger interval ..[ a,b] NOw suppose the theorem holds 'for.the
.k..-th Taylor po_lynOmial (k n)

where note Ari this case that _It. r Ik {1 (t - a) +1 . Since

k < n the function .1'3 also has ;:k + continuous 'derivatives,

f may be replaced by to -Yield
..r. -

4

k+1 f(i
k(1 t(t) a)1-1

) (
Ia)1.0 = If: (I ):

. .

.Consequently, for

.
.k+21 f k+1
+ 3.)!. a)

:

x f:-. Ca.-.,b3, (compare .Exercises 6-5, No. -6)

7!'

S.

r.



1(0 ldt f (a);

A

Thus (iii) -. holds when k . is repla.cei by k + . We conclude that
-- . . .

viii); holds for -k; = ir.1 ::" Since we may tae t =b in` (iii) the

theorem.follows tcir the case a <ID "...'

If a , :integrate from t to a for t E b,s.] in

±(111.) f(t) < - ;

whenCej:

If(t) f(aI
Thus (iii) holds, for k = 0 . Now suppose (iii) holds for aome k
th k < n . Observe in this, case that It a jk+1 = (a - t)k÷1

oceed as in Part ((a), now with x b,al and integrate from

o a to find

f( x)

fk-n.(x) I 5
Mic+2 Mk-4-2

x/ Zaz (k -+ 2):1
a 1k+2

'which completes the indU.ctiVe -argument for It follows .that.-

a4-1(' x))11. ÷1 .( a x)n+1
f-12.(x) fCx)

.

- which :iMmediately yields: the result -to 'be projed.
..

-- --1Show f (X)',i has constant sign- Lia the interval:
13-3 ',then the,- -retrxi tinder R .(X) - has the same sign as

fntl(x) ay3z4-3-



°

foi4
.3.

whence

(i) 0 < ( ) - ( )'.< M" Ilict - .s.-
a 7 -n+1 -

. .

- Tfius7 tkiefirs.oi-de..i...remainder.fdr ()- is =PoSi-iiy-e .. Repeated 4 Integra ;-
--t.i4;:ina. iie.i.d. .:-

..

. -

replaced by

and.the argUment goes -as before.

Suppose now that b < a and f4 ie nonnegative,
0< i(n+1.) (x) Then for t

whence,

o;

.

O.< f (x)d.le':< 1 -..t)- n÷

n) (t) t)n+1

Mn+1( a) f(4)(t) - f(4)( ) <0 .

Again, the result is obtained by repeated integrations. Similar argu-
ments yield the result when MI1+1 is rioipositivey":

.

- Alternatively. -u:se.the Lagrangd,form...of.-the.remaindez;



In-Example- 13-3b we found approxlm2Lting polynoMisi1s foor r arc "sit . -W
not acutaily prove that, these are Taylor'polyncglils. by verifythat- he
coefficients satisfy .(116)-. Show that these are-- :polynomials -by*
pr9ving-_:the following general uniqu ess If f has n + I
contliuous derivatives and there e.xis ,s. -a neights3r-hood of where

_

(x a)1/ +f(x) c0 c1 (x -. a) -+ .

where- (x) I < Kilx -:-14111n+1 tj;len,
1(k)(a

)

) -I-, ...,:.:+ b fx A- =OP- be the n-th order Taylor

. .polYnaMial; 1.e..; 4let .. f. Then by Theorem- '15-3-:::
. ... _ _. _._... . .

f(7x) ,i-. -fn(x) +. Rii(x)
... .

where IRn(x) I < r n-1-1ix - a , (here
difference in the two representations

(i)

where IPn(x)I
Pn (x)

k
-,nlina = 0 'for IN< n : Now, take x = a in (i) to obta

Nx....a .(x - a)
7.,---

c 0 = b0 Next, divide in (i) by x a and take the limit Lit x--

approaches a to obtain c1 = -61 . Repeat, dividing bY the- consecu-
tive powers of x - a to obtain ck = bk for_ k = 0 , 1 , 2$

n+1 -I) Taking. the
for -f- we obtain

= I Qn(x) - Rn(x) I < + K2) I x - a 111 . Thus

n.

8. Lagrange obtained a forth of the remainder ,Rn(b) (3) 'which genera- .

lizes the Law_of the Mean. For this, apply the Law of ;the Mean to the
function

_ .)k (k)
11+1

-
f (x) + A(b - )(1) g(x)

k=0 - .

on the interval [a.,b) with ihe constant .. A. chosen so that
f(rg(a) = g(b) = f(b) aid verify that A - (n + 1j where g .dies

.L+1)g)
t

between a and b . Thus the Lagrange form of the reitlie.inder is

R (x) -
(n

+
1)

(0 fx a)n+1 .. f
What conditions :must and'itsn (n + 1),:`

derivatives' satisfy for this result?
, .,.

Eifferentiate in (1) to, obtain ,



1V f

to obtain.

. f

In the course of the Proof we have assumed only that - f- is "continuous
on [ ,b 3 and has derivatives of orders up to n on (alb)

A 9 - (a) Show that the remainder in Taylorts'"Theorem -can be written in the
form_ 9

N.

Rn(b) -

-wEC.di4,,,i-6 is assumed that f has. n + 1.

(Hint:- use induction and integration by
41Icellaneous Exercises, No. 20 -: ).-.

continuous-derivatfves.
rts. Compare Chapter

(b) it )1+ f(a) rt-
b

eIntegrate;:by'Part uTsing'
--. - ';.

R0(b) fT.(x)(x.-..b)1

= fi(a)*(b."="-a) - ).fit(?c)cbc ;

whence, .



. Integrate. by pSts using. vu' 'f. . (x)..

r
to "obtain

r .

. (k + 1): (k +1).1

(16-1) (b - a)k+1
f (a) (k + I): Rk+1(b)

. .

Consequently (i)1 k replaced by k.+

.(b) From the .ittegral formof the remainder obtain Cauchy re:meander
;;.

'14 = J4b a)(b u)nf(n+1)(u)n:
where u llei between a and b .

Use th.e Mee ''Ve.lue Theorem ot Integral Calculus (Exercises
.

(c ).-. Use Cauchy's form of the:remainder ti5 prove the -clai.M.-of the
. _for the Taylor:- exbansicin of arcsin ,'in Ex.smiAe:131.3 that

R (x)'--= -0 for Ix{ 7.5 .-
.33"0:0

.-

Use-Cduchy2s remainder

.

.

Since,--for 0 < t 1

a E
(n+1)

(t)
.:1-3-5 (2a4.1)

= 21r13(1. -t) (2n +3)/2,,

the pauclitremaindei for gn is
ta-

997



1 - 5 -(2n. 3- I) --t(t --

2.
n4-1

(1. - u)
(2n4-3) /2 (ut)

-

where u lies -in- . Consequently

-

.
and

-.1 ,.-:u <,1. --u- and.

-.. ....--.. .?:.- :

.. -.--..,

1(ir:L().1 4- III. V1 4- 1)-t1 .....I (. .-j--- )t.1 (.1. ---u)73/S
2n :

i ..
Now suppose t < s < 1 '.-: 'Set. r = 1 4----I

n sufficiently large, n > v = I.[ 1
For

+. )t1 r .

Consequently,

. IQnft) I <t(1 1)rn-v
2.N.

< "Crn

. ObatFve,that

-3/2

where C is a constant independent of n .

arcsin series is given by Equation (11) as

Now Rn(x7 iOr the

:(compare. No 7); hence,

where X < - x

Squeeze Theorem that

Since . r < 1 it folloWs
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10. The ceejericity- of an .P-r1 pse -is given 2 b2
ais semi-major axis' and b the Sgq7/1...4:4120c axle. The circle, a = b ,has eccentricity e = 0 I. -thus, e measures the depa_rture from circular

symmetry . Obtain- the'..xrciength. of . the ellipse in the form a =12--±" ( e )
and expand f in powers of e to sixth order. (As we mentioned in
Section 12- 1.(i) ,. the ,Integral for the arclength of an. ellipse cannot
be .written in terms of elemen.tary-functions The Solution of this
exercise, yields precise:fttimates of the ai-clength provided the eccentri-
city is ...not too. large.) ,

,

USe the .param.etric._,_equationS

2 6 . 6:2 2 _.,- dos 44- 2 cos 0 e --cosh` 0- 'e cos = ,1
- .4) -.!>7.- - .

. .

;ClUatiOn. (56.) of Section* 1-076 (page 574), we have.'on illtegrZ,ting;

e?; 14: 6e -
2 -

. -

.. --.- e . ..
4: 411 A: function f is said. to haVe a zero off`- order ;lc.; at Yc = st-;' it. .-,.

.-.. :- 0 = f,( a ) . =, f 1:( a) = f" ( a) =- : . . . = 7-1-7---:) (;) Eind.. f li(6,) a , the - ., --leading..
. _

lead,Ing terfzf'in the Taylor expansion of f ,at -. a is :_:then .-
,,(k)-. -

-... -f, ........(a) .z' k(x - a) - Pr.P've if f .-hits. a-fisst:.<34.ticiei;!zcro at x = ,a , then,.
- .. ,,, 7 R. \ ri - .... ,I ":-the, function -: g. giveri i:)y '-...43-(x") = -..L,VN-) ] has a ..7zero of -order n -:.' . --

(iii-nt': n .Use.. the 'Lagrange remainder of lid; 8- f_crr. _,:f". -. ''
.



_ If f t'-has' a fii-st order zero then

s

er(E)where. - (x, ar- for 'some g between
quently, we have the existence of the limit,

lim R1(x) e(a)
x-a (x -- a)2 -

It .follows that. function Uefin- edthe
-

icx)
a

. for
-1*x.-

x . Conse-

14. differentiable. Thus

'where 95(a)' -A 0

x, a

, for x = a

Q(

(x - a)95(x)

Consequently',

te(x)In = (x - ) E0(x)r .
= - a)n(E95(a)ln--1-,nEgi(u)] -195**('ar(x a))

where u lies between
, . .

and .8.- .-. Noy apply Number 7 (thus it 1s.. .

.assumed.that g has n.-1-17'cOntiiii.tous derlirati-;:res)-to" obtain the-.
.. - ...., -..desired result. , . _ -

e:

. curves art''`aaid .k.o Have aiPcontact of -order n at apoint Xol

isis the largest integer for which he curves have parametrizations
; t.).;.1 k-- Cr(t.)-,'.-resped.tte-1Y, with 1(t0)
1rPt(-6.c? and -c11(toPPA d. and -r- (t (t )_- forp
- . ---.(n+-1) .

such.,-that, --

O
.
): -I

. ,- 11 r -(t ) q (t0). . ,-Taylorls Theorem can easily be. .

extended comPonent-by-component to vec-tor functions ,,s6-tf:tst this condi-
: tion may also be; given in terms of'Tayl-or polmnpm.l.als:as,before:

(a) Pro've. that if t is replaced --by. an equivalent parameter, the _

order of .contact is unaffected.
.

--- Set : t = 00i) .;:wIneee.' 'thy ,-,- 950.7.),-.-.zukdie fe!..(Ii-:)' 0 .. .- .. , -
.:-....(:vector. -"fundiot :r) =# r.. - q . Fe. are;glyen- that-- p

. c '
..-

f- ''. (k-a) ,

.:12-4tibduce. 4-lie
,

0 .
) "= p

k..= 1 n , and p . (to) For -_the...comPosit

_

1000:



function 1-3-...0.17(0(u)) we to. prove aimi3.arly--that
-400 (u ) = 16' for k. = 0 1: 2 n and ek41)(u )0 , e 0
.(In this we assume. -t_ 0 has as -many continuous derivatives..as

ire may need.) Note that,

13-3

a

et

-Pr(u) = P(t)
x' (u) = p.(t)931( )

vt(u) = -15-c-ncis(u)]2+

. Weprove.in igneral, -that the k-th derivative of

k > 1 , has the form

(i) -7e(k)( ) = 15(k)(t)[02(11)3k 4' r(k.-1)(t)f1(11).-

(k-2) t."p kt)f tui ---
. 2

Tr where

154(t)f (u)4-1
The result has been proved for k.= 1 . The argument is inductive.

If (i) holds, then on differentiation with resj3ect to. u

rt(k4-1)(u) is(k+1)(t)[0,-(u)jk+1

whiCh has

We have

,Fe obtain

we. obtain

-is:(k)(t) fkro. (t) fi(u)0,

-1-1D (t) {fl= (u) f
.2

(11)0! (U.)

+.... + (t)c_1(u)

the same general form. as (i) with, k replaced by

.(:1-10) .=."--15(to) = O . On taking u = u0 = t-o in

further n (uo) 7,00 for k = 1 o 2

7.(43a.

1) 6.2:6 ,t-pn+1( I 0, _]n+ 1 -6

-)3

(b) .Let s- and cr bearclength along the es
-

= .. Show if the curves haVe co tact"-of
in Part {a) then-the parameter -of Part (a) may
length; i .e-. , for

js !r'-(T) Ickr and
t0

t
0

)Id
-t

2 and

order n 9s defined
be replaced by arc- '

0-

_

.1001..
! -.?- --(

-4- L.



we have. = dkY
k where

d a
C7=0

do}1 d

dsn+1
a=0

51':

This result implies that order_of contact has an inverial# meaning,

independent of the :choice of the coordinate frame-or-the method of

parametrization. EMploy the chain\l'Ule to -btain

ds

4

Is
12'1

where the Idi.lme indicates differentiation with respect to. t

.D1Ifferentiate repeatedly with respect to s to obtain

_(compare

d2.2 fir V(Tr -2t)
asi

2
Tzt , J3

Exercise 11-5, No. /4.(b and, in general,.

air

ere 14 a rationaico4'hination of7Itsz.arguments.,
a/.

cikt Ric Iv I ,-Y-T
C.

Since. the first -42 derivatives of 1 and' 7 are the same at

t = 0 it follows that 114 = 11-i for k =-0 .1'1 2 2
a..10.. .

.._

Since n' is the:laigest such `integer, we conclude that

43.22-1-14 ,, dn-1-11.- .

..."
'''' -=- . It follows .that order-of-contact could have-been

cil., dcA.4.1 . ,

defined in, Part (af.,as the order to which the TaYlor polynOiiala.

COincide when arclength ;taken as .the parameter.

. . . . .. . 4. .,.
... , .

( c,) Show- that. the curves y = f (x) and, .7 = g(x2) . have a contact f
ordei 1 at x = a if, and only if, f .-- 13. has. a zero .of er,

n + 1 'at . a . .-



First from the definition given in Part (6) observe; wAh .x ...--taken.,
-

in place of t as parameter; that 1f."--f-'- g .15.as a .zero of order
,

nti+ I then the order 'of contact is t n . We shallprove,---.

using Par-t,(b), that if the conta- rif order °n--, then
(k) (k) .

rf (x0) =. g (xo) fo 'k =0- n ,'-namely that

4; 4'

f - g has a- zero of order at least From this pair of ,

proposaitsions the result ,follows: if f - g Chas -a zero Of 'order.

n-t- 1 , then the .contact_is of order' n or higher, but- the order-

of contact- cannot -'be higher than n for then the order of the zero

would be.higher than .n + 1 ; the converse follows

...:For the proof set .y f(x) ; v = g(u). rox...-plarity.and:teike\

and - u. , resPectively; as arclengt1:(pare:Meters: on the atirves With
s = = 0 at the point of contact. If-the:4dOntact is of order. n

then by the 'result of Part (b) with (2 = (x,y = (u,v) we hgive

dirle

del.-,ds Is_
= for k 0

1-4 le _ dn±12 d-- /k) (k)let:Now let x y -e-denote k-th derivatives
ds da

with respe4t .to s and u .1 V
-(k) -()

with

t.o cr 7r-171e-have

2
1 0-: wand, similarly

respect

where_.

-e.

rat 'one

a v
' duk

4

... 1 and, in: gene

(k) (k)

ina-eibn of its .arg-uments . Si -I arly
e

,v

. .

OW -when' a 91-s -14..=
.

;tor:. -114z-- 2

.

we have-- (k) ) (IGu ='''X and v -= y

Xt follows that --Z

for k = 0- , 1,

n or.-higher,

-n -; namely that
we sought -to pArb-te.

:f' - has.a. zero ofOrdeki



13. Infinite order of contact at a gliren point .does not necessa-rily-
that the twocurves. coincide on any neighborhood of the point. Show
that the curve

1/-2
;.,.:. .e.-'/x, , for x i 0

. .
...j. .. .

. 0- for x = 0..

ha ..a contact of infinite order. with the x-axis at
"-

Show that all the derivatives_ of _y vanish at lf,Thus with
Z =

3r01

-1
=-1-117, e

G k-
from )-Le 843. ._(Here yo. = d y

dx

= lim.
Z0.40

2 -1/X2.'
.z e ..

x..'Y1 =
0

z
e

Thus

for x # 0

for x = 0
is continuous. In general, the de-rivatives of 1 y have the Toim

..

ai

2k-I-1 2k. _

+ _ :-.,,..a2 - . ak ) -/x2 for .# .0
k-f-1 e '

/ 2

(k)
)

x x
Y

- -x.

. .- ..- -
and by differentiation and application4 of Lemma 8-3 as abovt it.follows
iniuc-tively that if (1) is satisfied for any.value of it is satis-. k

.

fled for all lefrgei- values. ,

.

a.
. 14.e. (a) Show -that the osculating circle to a curve_ at a- glyen point has a -

contact of order .2 or more .

Let denotearclength measured

. along- the ciirlift:fC ="P(s) and

-a ; arclengtb along the: osculating.

ciroire, Y = 1(0, to the curve

"2' P(s) at.. s = 0 . The central

-angle subtended:by .t1;14 arc .X Y0is Ko' (see Zig-a.re) where K I
.the curvature, :that' is the



4

4111S. TO second order, we have fOr a point,

= rco s3%,-

2st K it0 0 2 0.

For-_a-point -of the osculating circle we
component in the directions *of t and

-

Y = sin cos Kd
0

13-3

ve -on :resolving into

where A o is the center .`of the circle. Expand sin. Ka
and cos Ka to second order and pbtain.

x
(Teo 4.

K O. _ ,t
_ 2 0

which coincides with P-5.) to the stated order.

(b)116.Prove that- if- an osculating circle. to icurve has a
contact of order 2 then it crosses the the .point
of contact (Hint:. 120.e the result of No.

011.loose' a coorainate system in which, the origin is taken at the
point of. contact and the.. x-axis
is oriented in the dii.ection. of
the taint- (see figure),
this o ordinate sirs4em tfie curve

'.e.nd the oScUl'ating .circle may be
desc_ribtatil in a neighborhood -of
the origint as the graphs of func-..
tions y and- y g(x)
respectively: Mcpanding to third
order;' We. have

f.b0L7 g(x)
411where; by Nunther.11(b) fra. A 0 .

+113tx) .1
Fro Taylor's Theorem we have-

,' IR3(-x*) I. <.:1)X4'- for -smile 'positive b ConseiluentlY for
.

f.(x). - g(x) = ax3[1. + ] , .'



provided.. -1x1.7- b . In the, neighborhood of the point of cOntact
defined by this inequality tha....Sign of 1 t 'e is positive. Con,- a
sequenta:v f.

2,0(F.(x) - g(x))
Thus the sign of f
we conclude that the two curves cross there.

= sgn a.x3

changes a ss the point of Contact ,;and

This -proof requires existence and continuity of the fourth
derivatives. Alternatively, requfre only existence and continuity
of the third derivatives and use Number 6. 91J:ice the third derive-

..tives .of .f g at xo is not zero, continuity guarantees that it
has constant sign on some neighborhood of xo as the proof of
Number 6 requires..

Note that the :argument applies to any two curves which have
a contact of even order. If the htact is of odd, order the two
curves touch but do not cross..

15. Given y = f(x) and: y g(
8(n {1)( a)a r 0 , prove that-j

) have contact of order n at

f(x) 'lim fi(x)- = Trc
xma. x-a

_

=7.

f (n+1)(a)

.Observe that' this is .not.L*II8pita.17
Liliapitait a RI:1.1.e. stEte`s, if f(a) .g(a) = 0
deleted neiglibcirliOod of a , and 1.1M .f t(x).

1m. f(x) = fr(x)
x-a (x) ir-af.

from the Generalized
f(xnaiMely, from

between x and a..)

s most -general' form:.

and.-431.(x)..4000. on.. some

exists, then

(The -proof of ,L/118 pital2s Rule follows dix*ctly

LAW- of the Mean, Solution to Exercises 11-M, Bo. 104f(x) - f(a) 1'1(1
nUmber,twnere .0

In order' to use the-approach of Tay or's -Theorem
. .to obtain the:first order repult, we must assume the.existence!of a

ae6.441 derivative and .obtain only

lira. f(x)
g x).- g-Fta7



which has meaning only if g' (a) :15 .:-. Thus . lim 4 .) may exist .

-x-d: g X)---...-.

and 'Ltliepital!.s Rule still be applicab1ehere. (i.) is not.- The
. -

. .

-. -.-difference is not so Important as mayf.aPpear, (except in,. certain singular
. : -.* . - :

oa g
=-' A.1111

ses ,- like :. lim x.,lo x ,;

-

if g' (a). =-'0. and the limitI log x _

x.40 .:S. - .

exists (thus . (a ) 0 al.Sdl, then it is -us-114=111 y possible obtain

by going tohigher derivatives as in .this' exercise.

.Assume n + 2 'continuous deriVatives.. Ther'mlky Taylor"s.Theorem,.

for It

.4k
(k)

f (x)
(k) (n+1)(x)

(a)(

where in some neighborhood of

and

f slik( ) I

n+1* .+ 7 k)Ip (x)

+ (n k)1.2.1(

Ix - n+2
n+2
(n -I- 2 - k)

Bk4-2 lx a I n:4-2

1*i(x)F< (n +2 - '

Where A and are uTP4r bounds- for

respectiVeIY. Consequently,

(k) f
( I)

(a)(x)
lml -

(k) (n+1)x-d g (x) g (a)

1±.(n+2)(x).]
and 1g,(n+2

e2(x)

where lim ei(x):= adam .62(x) = 0 , from which the result is immediate:
-a xa

tot-

Alternatively, use the Lagrange form of the remainder from Number 8

and assume only the continuity of the (n + 1)-th derivative.

ilk

In this case, LtHapital(s Rule yields the valid result

lim x log x = 711m x (log x)2 but it does not help in the, evaluation of the
lt-0

limit. For that, 112118pital's Rule must be extended to the case lim f(x)

g( x) = a) ; where in this example f(x) = log x and 'g(x) =
x-a



lira
x s x01.

x - sin x
3x-O sin x

(f)

(g)

lim (x - n)tan x
2

sin. x - sin alira
xe-a X -

lim fl - 1
x-17 Iog x

1 xlim logX 1
- a

x;-0

. b

x= n = -1 .x
2

= cos a. .' (The result also follows.
directly since the limit is
&Pin X) I

X=a

= x log x - x 1
x-1 (x - 1)log x 2

= -a:

17. If f - g has a zero of order n at a we say that g(x) .approxi-Mates f(x) in-the neighborhood of x = a with an error of order n- .

We also say f(x) = g'(x) 4- A(x - a)22 plus terms of higher order (here(n) (n) .
A - g (a) - f (a).) .n; -

(a) Let, sl , s s s be successive sides of a -convex quadrilateral.
.L.. 2. ' . 3 '

An ancient Egyptian document gives as the formula for the area .ofthe quadrilateral -

1
47( sy. s3) (s2 t aid .. 1y

This formula is. correct for rectangles but is not .genellifily
For a quadrilateral with two
adjacent per-pendicUla.r sides
of length. 1 and two.;'other
'sides of length '1 ,
(see figure). 'What is -the
-order -of the error Of. the
Egyptian formula in the
ne:ighborhood of x = 0 ?



. 7 es

The Egyptian .formula yields the_ approximation

-2
: + Xja:= - x + . 1 + X

From the.adjacept'figure,-the.

Correct val4:ip:fOund ta:2pe

0
+ +.-x)? 1

2 2

= 1 + X X , a

The error is 'Second order in x .

) Let s' be the arclength measured from Xo to X along .a plane
curve. retermine the order in s to which the arclength is
approximated by the chord length = IX - X

0
1 and give the error

to lowest order.

Observe from Section 11-61 Equations (10) and (11),

=

where
0

Curvature at
0
0

2 s3
4- -K.0 2

--6--
0

(K; no - o) v

are, respectively,-the tangent normal and

. It f011ows that

K24K
0
12

=
'Kks

_ .

12

k 2s2
O

=. (1

41

The error is t ra order and to lowest order,

- s

2
K s3
0

it is



13-4'

titmeri eal.T.ireiciatirtil.

practice,; it is import to be alert to other sotirces_c)f, error than
the one we have treated in this etiotk, ' the error in rpplacirg the: ilitegtand.

2.,-by an interpolated ,poi,ir32:- "onlial. T.yiiig-111111Ps,-:ille .funCtionvaities,.-ii'''-_eaialonly:.
be given- apProXimately. = Round -off error,, must be- accounted'Ltsir: Usually

. .,.
_, these matters ere- taken care of by, carrYing-the..ter*-. of a coMputation to a .

..._

sufficient number of decimal- place.
..-.. ."

We have not derived tiie rigorous es .imateS i6) and 14)- but pretrerred tO .. -. , ..obtail the estimates (5). and (13 ):"..heui:1_ gaily; , -There - good _reasons .for: ---*..

4r14.iiiri '11 to lls t: t look '"-bilis. The heur P.-aPPrgac - us w to .00 or. -1P,e-cotpand the. .
- -' tegral and- the approximation7,forMu.la to -the_ order at hich' the Taylor eicoan

isions first di e r, The .erron:io-X64it ii..ger--5- S. :'1a, na kn wn. 'A rigorOui
error can then be derived by- the method- of .E,c er cis e 1374, Number 5 .

Moreover, as we saw Zia
.
EXample 13-4; the nonrigorous error estimalipmay be

more accurate -than the rigorous error tolerance.

SOluions Exercises 13-4,
.1. '(e), Estimate IT by approximation..to-,

_ .

.

- 1J7

O 1 + x2

We give 'the computation

.oba. 000 b

.961-538 5
-

4
y. = 069 o

y6 .735 29.1.

.6o9 756 1

y10 .500 000 o .
4

Simpson's Rule gives.

by Sirapson< Rule Sor

..boo -poo .o-

.671 -140- 9

.552. 486 2 .

V 23 T5L
(y0

+3'10) ÷4(Y1 .4?r5 -y.t+Y 2(y2 -E--7.-:÷Y6÷3r8) 3

. r %

15.7211-6i92s -I- _6.3373154] =.785 3981 2 ;30
.

4
Whence Me 3 .14159 3 . The result is accurate to the-nudber

.

places given.



c*)

.ga

Estimate how large n should be taken in.Simp.soni.s Rule to giwq
accurately to 5_. places by approximation to the integral. of.-Part
(a).

- M
For the error in it we have from (14-13), We estimate

-

2 x"105M 4144 ' - - 4 4 .. 4.by or-" n . a; ---7-'-7 a x ...1.0 ; whence,
li-5n 2 X 0

) n > 10

To estimate.' M differentiate
- .

1

7 .

four times to obtain
1 + xa

24(5*417 '- '10x2 -+ 1) 21i-k5u. - 10u. + 1)
, 2

_.
.7

(1-,+ x2)5 (1. + u)5
. -v.

2 .

where u = x To determine the maximum; .of yw on [0,1]
. .

. 4 'locate the. zeros of
.

.

-30

dy -120(3u - .1) (Lx 3).
du. 6

(1

1 ,--7057he. only -Zero in the interval occurs .at u =
3

and we .have as

candidates for the maxiis



13-4

I.
.

Thus the maximum occurs st D and we take

Observe that ." <1.1-_. So we May take

*

;

. .

n 10 -4.1.2..sx 10- x fg 18 .

A. -24 ( i) .

Thib is .actuallY farL too large as we know from the-soiutiori of'

Part .(a)-. A more realie-tia procedure would be -to attempt to reS-tiz-
c with the help of c12): We would then obtain,

5h--br90 1
r... 4 ym ).

n7-3,.
.-This-Su-ggests ithat-Fthe sum be approxffnateil:bir' a _Riethanzr integral' {see

axeicis eS;f-, No'_ 20); that is;
-, _

- ...- -. ..

.
e 124

c '1136-
=1

Taro
.][b.

fiv..:(X)dX ;

whence

. -a 4.(ii) e = 5-15,4 ft" (b(b) - ful(a)] = 'n :( b) -fm(a))
1.80n

2

In the-case under consideration

)
24(x - - x3)
(1

whioh,. for a = 0 -b=-- I , yields -c sig 0 . In this cage, (ii);-5a'
no use as it -stands except to indicate that (i) 'yields a grass

overestimate. of the number of partition, points .needed:` (We could,-
if course, eSt.i,;a7N.te...0p error in -the, error estimate which s
Obtained:by the so-called Tangent Rule' of inumerital integration.
This yields the error eStimate-,- subject if - f."2.(a) = 0

-(be yrn (1;)
4.68010.6

Applied, to Pa-t n..> 5.2 n = 6 Simpson's
Rule- does, yield accUratilly to five places it =: 3:14159 .) For the
integril of- pait (a) the error is pbsitive'oie.r part of the integral



..-
.

I

and negative over the i.est; we have found only that the
cancel and. the result id' much ei than (114b). indicates;

Number 2 below-the estimate 'directly
I.

2. Obtain: log 3 to four decimal place eta cy..by numesical..integration of

.

iTse y'" in (ii) : of the solution' to-..Numbei

the.error: estimatz.f or S.iri.ps on s Rule,

. 1 :..

e -
. 3.8on 3 15n lc

where we ignore the tern'. 'Irap-ose the' Condit-J.-O./1T.

-

n

3

Since n must be even take

n = 18 .) For = 1 +

y
0-

1. 000 00

333 33

333 33

Yi iv .A57 14 .4

y'3
7

y5 . 545 45

. 140.0 00

(
11 tt .

352 94!'

b = 3. 837 .

4b = 13.4_34 96

375- . 10.2

lc) to 0 itain

or

n = 12 . (Note that (14b) -would, tcfr

;12) obiain.k = 0,

-1dg 3 .1-4 4b 4- 2c)

.09864 :

In fact, to five-place atcualcy,
Ifr

log 3 = 1.09861 .

y2 = .750 60-

y14. = : ..600 oo

y6

.= ..428.57

3rio 375 00.
c -= 2.653

2o = 5.107 "14



13-14.

3. Estimate the integral
.

* 4. iCipsTr
of Section 13 -1, Equation (1). Compere Exercises \13-1 Number 2.

2 v2
Use the substitutions sin = u

algebraic integrals.

, cos ' = 1 -2 to obtain regular .

Simpsonts Rule cannot be applied to .thy, intcegral as it stands
integrand is not defined 'at * = . Fiora the observation in

Itiraber 2 we371

I. =

have

Use: the P substitution

d .v/3 d* .

ir/6
d*

cos O cos,' J 0 *

sin v u to ol..mein

Ir
-2

0 4

because the

Exercisep

4.

.

-sand .1'15517 "cos:* 1 to obtain

v/3.
7-21.--tr = 21/"'

OJ-0 va7,17-v.

We use- Simpson's- Rule with.- n = 2

-we have
s.

ri
whence, .

C) A,

du

.500

_

v,

1r,0(4 v.2)-

for bath 1.4tegralm.

516 , .577 ;

.' For z = -1
we have

..***(2 - v1) (4 -.172)'.
- f

..3540 z 1577 4P;

101.41 "1

.e



4W

. insert-these results in (i) and (-1-&) and add to obtain

-which f

Nwiaber 2.

h 2,r2 x .914o 2.66-

in the range indicated in .the solution erCises.13-1.0

;-P-ar

/4.

Simpsonts Rule

with -n = 1- ..

5 .,,Use
for

(a)

41

r4 -6( _ =
0-

is exact for cubic polyno . Apply Simpson!' Rule
- .

the int-egra;. form of. the Taylor remainder to obtain the error bounds

the Trapezoid. Rule given in Formula (6),

With.-ther remainde rs in the form given by.Exercises Number 4.9(a),

haie:Insteitd, of ( 3 )

PP a

1-ck4 2?!.(x)dx;-
.1):1! (x)dx = y- h

2
+

xk -1 xk-l-
anal: instead of (Iv);

2-(3r ) = 7 hk- +
. k k1

t ..' These results -yield (wi-th..the .observation
. .

.t
'k-1_ 2 h -

-1- !;-.x).f",(x)dx
'2 .: 2 -,

_ "k-

Y

1.

rxic
r" () tii(xk -

Xkll

< -2 ic _ :..1\tr (X) I Ch.( Xk

XIC-1

Xk

h = xk - xk

3) 2

2 3cbci.

.
Jcix

. 0 "qr..

.1 2-2;) - (xk -x). )d'x
sk

.1015,

....:

.4.

40,

(formula continue&)
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h(x1( - x)2 (xk x)3
xk.

2 3
xk -1

111

(b) Simpsonts.11-121e given by Formula (13).

4.

Use the integral remainders in the derivation of (10) to obtain.

,
f(x)dx = 27kh

Yk
+ h3

Similarly, with integral remainders (11) becomes

hry-t3[k-1
Wyk

3rk-f-1 .23rkh Yk 3

For the error bound we then have

1
fxk+i

(.){ h(xk
3

xk

Jxk+i4- it- xk (x-k+3_
h) 3f

"1
dx

ixk -1 -

+ J (xk-1
x)3f- .

xk
o

4
t,

,
X) fw (x)dx

+-I
3 ( 4

2ck

fw (x)
h(x xk-1)4 (xk-1

xk-1

m4 5
< --- h

Mil,

< ---,h .90

237-)5- (21 20

'016 ,

193
Li
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13 -4

Using approximation to the integral log x dx obtain aninequality

of the form
-

(112)n

(Hint; Note that the extension to the left of a chord to the graph
y.-= log x lies above the curve.)

. Following the hint, observe that

k+1.
Jk = jr log x dx'

is less than the%area of the shaded

trapezoid in the figure. Conse-

quenia,Y., 2Y Y k'

jk log(k-F 1) - 1- log(k a)
2

where y- ----., log v . 'Summing froM

1 to n - 1 get

k-E2

n-1.
. i

rnE jk i 1
log x c:ldx

/

//
in i = -_,

.k-.1 .,

2 log 2 log 3 + log 4 + ./. . + log n .--
2

/
-6/'"7----1

,

/ :,

2
< log - log

Taking the .value of 1 from (15), then on /
/. ,

9
-n

(>
n

W. > --2' /b4E775.7 (=)- fa-
e

-1

e
-1/.-f

2

Ic.+2

7. Obtain asymptotiC expressions for th following binomial coefficients.

(a) (

1017 194

g "x
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- 1-27-m Cll..)

-/2/r(n - k) (n k)n-k

k
I

n
,c, -k

klek n -, k

? k
k,

n-k- an n f

(c) (14) , for large` p and n .
47;

(pia)

n

ig7754117 (2e)n
-(p-1)n

-1/37tri ( 1 : 7 ) 1 1 2 n (p 1)-/2
e

; .

n
- _P___ ( P

)
.

1,yrrn- ,P 1
.

4.-

(p-1)n
[1 + 1 ]

1,27rn P. 1 10

a- .

. .
2n-1-18. Obtain an, asymp-totic dxpresgion for 'the Coefficient of .x in the:

Taylor expansion of anc sin-x (given in Example 13-3b).

OberNre that the coefficient is given by
..

.

.t..'(2n)7. -- 1 42.n
a,-) -, .-. , ( -)

''n-r-L' (2n + 1)(h!) 2
2 2n, f.-__ ,4,_ -, \ n II

l .mEs ,-L- /

and use the solution of 7(s) to obtain"

. . a.
a2ni-a- . - .

( 2n, -i- 1) Itirn
.....

Obtain a sharper lower bound for .3k - Jk than! that of (19) and .so

ImprOve the. lower esilma'te fpr nt. in ,(23). (711r,t: Use the integral
form for the Taylor remainder as in_ No. 5 . ) . i

,

O



:From. (i) in the solution o4 Number 5 with f'.( = log x ,:we have

+ 1)(k .+ ( +`1 x
dx

. 1
k ek 2J k

k+I (k +1 1) (k + 1 - (k + 1 - x)2

k L .(k 42

12(k +

From (20) it follows that

log

Now sum. from n to n 4- 1 to obtain

a

. N.n 1

Xn+k
> expf-i-2-[

- (n
+

(n ÷ 2 )
_ + ...,..- +

(n + k)2

1

// # '''

The sum in brackets' nn upper sum for

/
in-14-1 1

. .

I 41 x2
. 1

n + 1 n + k + '2_
1 -" % 1

7 ,,,,,/,, .

Ift 1 1 1.

. r. n+ .e,xP (12 En + 3.1 n -I-- k +Thus X. > X

all natural n s k so thaLti

I-
I 1 1 1

-.t lim X exp{r7.- -13
n .,-- n+kk-00 _Le n --'--..a n + k + 2. '., .

/7 > N. xmi ..
,---; -12 (n 4- 1).

.//

4

OP

13-4.

1 ]) Now this result holds for
0

thence..
k

- ..
.....- " ..1 ,,... n- eiA2(n+2.)

, /17
n: > .127c2i (-=`)

e -

fi I

,

.

ett may be of interest to c re this lower .,estimte and the upper

estAate of (23) with the true'

4

lue for some n . We have

J/
1/C= 355 -68T 4.28 , 096 , 000 .

ing a table of logarithms we bta5_n to fiire significant figures for-

= 17 , with a = (3i')n

19 196



-

7

My/

k) a al _3.5392 ix

creilla(n+i) x.3.5557 x 1014

cce3112 143-55;77 x

4

-Ow

9 P-0

0



TC.13 -5. Numerical Solution of First Order.Differential Equations.

13 -5

To obtain a. useful degree of accuracy 'with Eulell's method the number Of_

steps is likely to be too high for convenient hand computation. For that

reason, no computational exercises are provided..7.,If= an electronic computer

is available to the class such exercises may easily be composed and assigned.

Solutions Exercises 13-5

1. Consider the solution by Eui rls- method of the initial value problem
(2a,b) in a regionwhere f y and g(y) have bounded derivatives.
Obtain error estimates in the form of Equation (8).

We have, in the exact form of (3),

where
m2

Yk Yk-1 Yk-lh + ?2,k

and N2 is an upper bound for y" in the region

-of the hypothesis. Let Ao and Al beupper bounds within the region
for ,,f(x) and ft(x) , respectively, and B' and B

1
the bounds for

g(h) and g' (y) .' Differentiate in 12a) to obtain J

y" = gt(x)g(y) + fC2c)gf(y)yl

.
. ....- (x)g(y) + f(x)2g/(y)g(y) , . .,

whence, within the given region,

y", <A1 B
0
+A

0
2

B1 B
0
=K .

Thus, obtain the exact form- of -(5),

9k Yk

where

.811
and, with L =A

1 '

Yk_i) hf(xic_1)[g(3rk-i) g(ik-1)]

2
IR I <K2k , 2

If(xk-1)[g(srk -1) g(35k-1mi < L(9k-1 Yk_i)

'For A = max(lc,14.) , Equation) and (8)' follow.

102.1

R2,k



23-5

2. Shwes for the initial value. problem (9a,b) that the approxiinate solution

it greater than the exact solution, namelx that 8k > ek. , >"):5)-- .

-

Let the exact solution be B = F(t) . Since 8" -
2 sin 8 the graph

of the exact solution is flexed downward when 0 < e <
2

. follows

for 0 < x <xj that the_gra.ph lies below its tangent line at x = 0 ,

namely, that

= g)c) t >

a.

It. follows for t = h that 91 > el . Now, if 91
2

let t1 be the

(see figure).title when

Since 'F(-6) is increasing and el > ei it follows that tl > t1 = h

The graph e = F(t never lies above its tangent line at -t1 , hence
1

< Al

Take t = t2 to obtain

+ (t ),-,47);T1 1

+ :(t - t
1

e2 = F(t2) < hicTsTa = 92 .
J

, 6
In exactly the same way .t can be shoWn if 8k < grik < 2 that

ek < 8k+1



13-5

3. Show if 4# (x,y) is a function of x alone, that Etler's method for
Equation'(1) approximates the solution-by successive Riemann sums

Let the differential equation and initial condition be

, and

Then, 9 = 9k k-1

1.2.E -'x)dx rk

+ h f(xlc_j) , obtain successively

.th[f(xk_2)
f(xk,-1)]

= + h[f(xk..3) f(xk_2)

=y
o

=
0

-I-

k-1

1:,f(xv)h

v=0*

k -1

- x
v

)

v=0

k-1

But E f(xv)(xv+i xv). is a fliemanri sum for

w wg

(
1023

goo

-1

f(x)dx..

a
,"
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Solutions Miscellaneous Exercises

y.

1. (a) Obtain an iteration scheme for the zero of f : x -0 a --
1

and thus
. br

show how to calculate the reciprocal of a without divisions.

Apply Newton's method to obtain the scheme

flak)
ak = aT-

f=
= ak(2 - aak )

This scheme is especially practical for use on a digital computer

since the computer routine for multiplication is much fasAr than

that for division.

(b) Use the method obtained in (a) to'calc4ate accurately to the

extent indicated by the approximation ir m 3.141593
-

1
. Take a

0 3
= . .Then

1
'a0

al = .3176

a2 = .318308

a3 =, .318309865

(2 Eta0) = .906

(2 sal) 1,00223'

- (2 - aa
2

) 1.0000059

.(2 aa
3
) 2: 1.0000000

Thus to seven-place accuracy

-
1 = .3183099 .

.

It sr . g

6 4 ....... .

2. In Section 13 -2 we observed if x
0
> 0 is an approximation 'to- ?Tr from

one side, then A
is an estimate from the -other side.. We showed (for

0
X . . .

, .... -
A = 7 , but theiproof is valid in general) that the arithmetic mean -.

1
.

xi = -

,
occ) + s-c--) is an approximation frah above: Show that the harmonic

0
mean approximates a from belownd estimate the error.

,

The 'harmonic mean is

1
2Ax0

Y1

2

um.
x0'x A0

=.

1o2u 2 (.) 1

7 -



ti

Set: e0 = x
0

- Then

1. yl

/ 2A ( + co)

+ A

r-

0
e

2
vA es20

2167

.9"

13-M

Thus E
1 < 0 . The result can also be obtained from the observation

that y = where xi is the given arithmetic mean. (The natural
1'

A
xi.

1--IV ,

attempt to improve the approximation by taking the arithmetic mean of

the two therefore merely yields the second iterant,

ilx1 + Y1) 2.--(x1 x
A

1
/

\
_.x2 )

),

I

Compute
0.

sin x
dx accurately to three decimal places.

For f : x x
apply Simpson's Rule and use the error estimate (ii)

from the solution of Exercises 13-4 Number 1(c), namely

From

4
E = 71--r[fg"(v) - f'"(0)] .

180n

frn(x) = 7[ -x3 cos x + 3x
2

sin x + 6x cos x - 6 sin xi
1

T -6vwe obtain fm(z) = , and f".(0) = 0 . (It is understood here
sr

that sin. x
is extended continuously to x = 0 .) Consequently,

7r3 - 6n 07.
si gs .

180n

We choose n > .07 x 2 x 103 or it . Thus:we take n = and

obtain

tb.

A

202
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dx 17- [I +.4
2 sinsin 7i.

v

321-27112'
-+ 4 4:

3 J

= 1.852 .

4. (a) Consider a right triangle with shorter side of length .a , longer
side b , and hypotenuse c . Let a. be the angle opposite side
a . Estimate the error in the approximation

a = 3'b +

From a=csina, b= c cos a,

a= 3a 3 sin a
b + 2c 2 + cos a

The obvious procedure is to 7..xpand, in powers of a and-use Taylor's

Theorem. Instead we make usd of estimates for the numerator and

denominatoi (from Example 7-5b) to obtain

a3 a5
3 -V)-er 3 17 + 3.7275/a < a a <

2
2

+ ) 2+(1 -
S-;

, or

a5 05

- 5'

cx <

- +.4
2 24 I

120(3 -
d22)

Since a is the smallest angle in the -triangle. 0 < a < < 1 .

Consequently,

a

whence,-

For a 7 ,

-
cr5 a < a5

120(3

-a

aP < - 1
72 72 a "M. < *70042 .

fir

t

Thus the error nevex',.exceeds .004 radians or one quarter of a degree_



13-M

(b) Obtkin an approx2tatioh for a in the form

a a(pb +.qc)
m

c
2

where the constants p and q are so chosen that the error in
the approximation is higher order than 3 . Estimate the error.

Neglect terms of order higher than 3 to obtain

a(pb + qc)
sin a (p cos a

+c
2

= (a - 9i1)(ptl - q)

(
= (1) oce P cl)cd

Since this last express ion is to be an exact, 4xpression r a ,

1.--.L......'""N.
impose the conditions

to get

,1).--+q=1,5-+ 2 - o .4

1 4p = =

Thus the desired formula is

To estimate the error

ec =

A
and use Taylor's Theorerkto obtain

a a(4c - b)

3c
2

observe that

1
sin a(1+ --,cos a)

3

3
sin cc - - sin 2a

where

-< 120

M5 is a; upper bound for

The fifth deriGtive

d5&day

da. 1027

41.

4



a-

.A.M.A.:

1 CO's .'2d] ... - _

--- .
-greatastItabsoliit maknitUde

---' - -,. --:-%.--a-='.-Consaquently;

.

which- is easily shown-to rea

,-E-J at- thd.. endpoint

Tale
a

M_

C& - I 14. ',(e °,1 14.)I c. 6
'da5 11`'

,. and find

I qNX of < c24
c

on

Of

' .. .5. Consider rthe solid of revolution .obtained by rotating the graph y = f(x)
pfa nonnegative function [ a,.b] 'about ihe-x-axis. Let )1. A

/ 0 / 1 /
A
2

be the areas of the cross-sections of- the solid perpendiCular-to the
+

_

b
/

.
, 4.

_

x -axis at x =
.

2
a

a , b , respectively. Shaw that Simpson's Rule

.w

1 -2*24A0 + A2 3

gives the exact volume for each of the followir# cases, .

(a) frustrum of.a right circular cone (y = a straight line),

(b) -segment of a sphere (y f(x) is an arc of a circle with center
on the x-axis), 1

segment of paraboloid, ellipsold_or hyPerboloid of revolution
(y = f(x) is an arc respectively of parabola", ellipse or hyperbola,
with the x -axis as an axis of symmetry):

(c)

The volume i5 given by 46-

rb .

V = 7rf(x) dx = A (x)dii..

a a

where A(x) is the cross-sectional area. each case above A(x) is

a polynomial of degree three or less. Thus Simpson's

(a) Atx) = 1r(ox +
r

(b) A(x) = It-[r2 - (x /- a)2]

(c) A(x) ircx

A(x) = vb2(1 - --2F)
X ;

a

2
A(x) =

(02x
`a2

a.)

(paraboloid).

Rule is
a

(hyperbola of one or two sheets).

ar

1028
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a y

The method also gives exact areas .of the frustrum.ptany cone (In
,

. 4 . ...-

genetal a cone is.the solid'generated by. the segments jotming_the points
''...4

, - .
.

,

of a given region; the base, 1 a given point,, the/Vsriex. Thus tetra-
/ - -

hedra and pyramide'are con.) .where.the cross7Sections are- ken along
4- \-

a line perpendicular to the base. ..rowever, we have given no, general

discussion'of volume except for solid( of revolution.: '

A6. Let 3t = 1(s).' be the vectorial_Apresentation

arclength as-parameter. Let C = P(OY :

Set = st where t is the tangent
at 0 . .Let Z be the point whire
the line_ XY meets the normal line

through . Shaw if the curvature
K at 0. Is not zero then to lowest

order-in- s , = 56 where C is

the center of curvature;

- r

CI

Set Kt .= 25 1 Then
ds

Tfru.s1,,

(1)
. .

whence, for

str

=

the

3Z =

2 3
= ÷

2
KE - Kt) +

N

' -2 3

of a' plane curve with..

0

E S - KIt 4- R6.-( Ktri x2t)

Ka S[2
S2
2

= st SL 1--.6.-(K*11

coefficient of t in 4),
K2 3

s =
6

'Enter this of. S in (i) to obtain

--K2t)) . ;

io29 2
;.-)

SP



to lowest order.

A7. ''Let a curve be given by it = -r(s) 'where s "is; arclerigkh 'measured from
5 =.:2:(o) . Consider`any three distinct 15aisats -.X.: .= it c s . ) _ , i = a' ( S2 )

1.. ?I ". 1 2
X = "P(s ) where the 's are .confind to 'an *neig&orheod of s = 0 .3 3 i.. ..._

Siow that the circle:. through -.the...t.kr.ree.oi,nts.; apprOlablie the osculating
circle as E) approaches zero. 1.r(Asurae `the: curia .. e at , s = 0 is not)zero.

'NO

Let thec circle through the three points be

a -'1) 2 = r2 .
--.

.,,.

.

6
..i.-

where the center .A and the'.radius r are to e deterrained. The center
P ' ,1.lies at -the intersection pf the perpendicular bisectors of', the segments

-
l ,,; -)- . _

XIX2 and x -X Thus-, for 'Suitable values of the s-calaro- p- and q ,2 3 _ -
-

1 *.
_ - ..-,.

44.4 .1-

(i) l'' 2X1 + -;) +sPA77 x Ct; ;.) ----

.:.

i
- = 2 12 4413). t P5)7. x (3t3 2)

where v is the, unit upward normal to the plane
v x n = -t) . thus,

Tix Cio(k" -5i".1) - q(7:3 - 2 2)] = 2-(3
.

0To solve for p , take the dot. product with X3 - 2-2 and pbtain

- ' . 51 - 5t2 3
) a _ 3!1 )rii) p - 3

2(13 - r2) Cr.; x (r2 - c) 1 -..
. -1,.

,
,,... , -...z.

Let ''' 11- and K be respectively the tangent, normal, and- cu.vature--
.... ''', `. ..

: t. :kw' I.,at s = 0 . Use -, ..._

(id.i)
" 2. 2.

7. = s:::-: + Si ii + s 3rce(si)--t 4- p(s)A]i 2 1
.1.

where ce(s) and $(s) are boiu4ed.: ;11:)serve from (iii)' that
. ...

2 2
k
(iv) V..,. - l. = (s _ - s ):t + (si sj )-2 11 + [ s 3c4( s ) 3a( s '--) 1-Z1 o .-. a. i 1 . i J

<,,

+ [s.1 30(s
J.
) -s i3S"(s.)-fri .

.. j

.
,

-a. -I. !,(V X t =ti. and

;
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.
.. - ....

a

Obse a by the Law of the Mean that ' . . ..- .

Xi
. _) . 3a(s.) = si3[cc( 6si) +(s. ,ce (u).:] + s

J
.3ce(

J
. )

-,-
2

-
2= (s3-sj ) [(s1 4,s1sj +.s

j
)a(s3 ),± s13.6*(u)3

si -s )a...52
i 3-0

.Iihere a ij is bounded. Similarly,
4....,

s133(s:) - s i 315,(s
3 I) = (s. Zr0.)b.52

..,
7-0

....,
.

is bounded. Insert these. restIlts in (iv) to get

2. SE- = f(sI - s.) (.3_ + a 52)7aE + [(s. +-s.) + b .52]il)
3. i J ij D. ,3 2 1,3

where

from which obtain the.,,weaker estimate

(v). 21 - It. = (s. sj)[(2. + a ij 52)--;. + c..611)
J. . 1,3

s . (v)where c1j is bounded. Use (v) in the numerator of (ii) and get

. -
(1

'3 - 22 ) .(23 - 2.1) . .(s3 - s2)(s3 - s.1 )11 + x82 ]

where X is bounded.. To estimate the denominator of (ii), Equation (v)
will not.,be adequate. We must use (iii) and then. extract the_factor
(s

3
- s2 2')(t777--- s1)(s 3-- s 1) from the denominator.. For this purliose_it

Is more convenient -to take .12 as origin and rewrite (iii) in the- gprm

(vi)
-...
where a. = s i - s2 . Also make use of

'3-

1

a(3) = ee(ai) (3 - aa..)& (u)

11 = .t n2 K2 --
2 + a2. 2 3-

+ a 3[et(a. ) "1 3. 2

(vii)
(3( Pcoi) (a3 dinit(v)

O

For brevity, -write ccir=11%(ai) , (31 = 13( al) y at = «_ (u)
fr = fi=(v)e. Then insert (vi) and (vii) in the denominator.of (ii)
and find, -using ai <

2(2 )
3 2 Et; x ( 5r2 ) = alas( ai -173) (K2- 2([a3 aiipi 4- pi)

+ K2a1a3(cxi + °sat') +2a2.-2a3-2(cc.143? - ) 3

aia3(ai 7 3) {K2 + c5)

1031.
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where
s
c is bounded , Note that

where d is bounded

K2 - g- ds1s=T
dKKK K

and z lies between s2 and 0 Consequently,

the-denominator has the form-

(s1 7 s2)(s3 s2 )(s1 - s
3
)1K ps]

fr
,

is bounded.. Enter these results in (ii):
--

where

1 +X52
(S
2 1

s )LIC Fab]

4

Now enter (viii) and (v) 'inthe first expression for I- in (1.):

1 +'XE.
4(23'. 4712) K- p.5

- c 8t + a 52ft.3- .
21- 21 -

1 5
. _

-Nqte also that lai + 2
2
).= -6 _i_e ,zz where the'yebtor U is bounde.2

. ...

.

Conclude that the center of the circle through the three points satisfies'

1 7 1;4 + E;V

./N.
. .where V is bounded. Thus the limit of A" as 5 approaches zero is. ':

,the-center of the osculating circle. Furthermore with 21 = 57 where
;

.

i

11.

W Is bounded, obtain for the radius

r2 12
2

- 1.12 15(17 - Tr') 1,4

5[6 - w - 2
17). ]

/
r1C2

s(wK

from which conclude that the radius c r

osculating circle, as a limit.

e

4.

1°32209

the radius ofilthe

ti

'



Teacher's Commentary

:cTapter 14.

SEQUENCES AND SERIFS...

TC14-1. Introduction.

The ideas of sequenceTand series used casually in the rest of the text

are now the principal object'of attention.. The 'ground has been laid so that

little time needbe spent on the introductory cbriepts: 't'he definitiOn of

limit (p.39 was framed to include-disconected domains- limits as fix
- _

approaches infinity" were introduced early (p. 231 the idea of limit for

a sequence or series, without name, has been used equently in the text .

(e.g. 0-Sections 6-2, 7-5, 8-6, Example 10-6e, and hroughbut Chapter 13). For

this reason it is possible to proceed directly to the basic existence theorems
A

For the existence proofs' we heed a form of the completeness- axiom for the real

numbers, and west upe the Least Upper Bound. rinciple (Section A1-5) for this

purpose.

The Cauchy inequality,' Exercises A1-20 Number 16, (p. 253) isuSed in-
,

the exercises.

Mathematical induction (Section A3-1) is used in both text alld exercises.

No attempt has beeg made to provide the 41 routine practice exercises

on the calculaion of liau-'ts;Id.t 1presumed that the text has already given

enough. practice of this type.

4

'1'

1.

C

-4



TC14-2 . ConyerEence of Sequences

There are some -conventions concerning sequen6es and series whicch we have
made use of without explicit mention in the text. For example, the definitloA

Of sequence in. Section 14-1 requires that the index set be the ,entire set of

natural numbers. For many purposes it is convenient to extend the definition

of sequence to functions a : k 4ak where the domain is of all integers

from a certain integer v. onward, k > v) .

In partidular, it is often convenient to take v = 0 . Of course, it is"..
-

possible to relate a directly to.a sequence b , defined strictly, namely

b k -* av+ 1

In a slmilar vein, we note that the function k which appears in theak

statement of Theorem 14-2e is not a sequence if any of the terms ak happens
to be zero. However, since there is some integer v for which k,> v implies

ak A 0 this fact is irrelevant for the conclusion of the theoiem. Simi J Arty,
ak

in the Corollary to Theorem-14-2e, the function 'lc will not be-a

sequence if bk = 0' for any k .

;FinaJl .y, we adopt g convention used tacitly on a few occasions (e:g.,
....

,

the proof of Theorem 14-5b), for any integer j not in the domain:of

a F'1C-+alc , that a
j

= 0 . Thus, for a sequence a , strictly defined, ite.

the proof of Theorem 14-5b, for a given positive r 'when a1 r it will1
not be possible tolfind a natural number Inde2E§L 1_,' such that

K. -6

a

i1 i
1
+1. a.- ocr - ,

< r < E ak
k=1 k=1 .

. -

We can handle this situation by extending the,summation ta include .k =.0 and
using the index. In'addition it is convenient to adopt the convention that

an empty:sum is zero; this, too, is a way of handling the difficulty in the

preceding- example.

.5-

1034
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(a) , Theorem:14-2a..

y(b) %TheoreM 34-2b

-1c):-Theorem'14-2c

(d).Theorem 1472d

. 1(e).:1 Theorem 14-2e

(f):' Thepim 1i -2f

:Salua-Ons Exercises i4-2

(g) Corollary to Theoll 11- -2c

Parallel the proofs of Chapter 3.

2.' Show that if < A

cc such that k >a)r

'Lemma 14,2

Corollary

Corollary

Corollary

Corollary

Corollary

1 to Lemma 14-2-

2 to Lenima 14-2

to Theo-rem 14-2e

1 to .Theorem 14-2f

2 to Theorem 14-2f

< A2 where A = lim a. , then
kmoo

implies Al < ak <A2 .

02

\
there is a number

Take E = A4- - A} and co = S2 (e) . Then for . k > co ,

IA- akl < e or A-4- < ak < A ±- . B u t < A - < ak <A + e

Prove that lim

Use llakl` - 01.= lak

if, and only if ak = 0 .
k--02

< A2

4. Let f be a function whose domain contains the point a. and points of
every de-leted neighborhood of a . Prove the converse of. TheoBem. 14-2g.
Namely, if lim f(xn) = f(a) for every sequence n x who terms lie

Er-co ,
4.n'the domain of f and which has the limit a theni f is continuous
at -a s °

-r-

T

-There exists

lim xn = a
n-ce
domain of f

a sequence x , with values in the domain of, ±1 and

since every neighborhood of a contains points in the

. Suppose'

4

f is not continuous ate a On the basis of
_ -o .

this supposition we-shall- constrb a sequence_ x r-n -, xn con-verging. -
o .

to- a , i;U.'t the sequence n --) f((x) wa.1l not couldtge-2 to f (a ) - Since

f is not continuous at a ',there exists an e > 0 such that for --each

5 > 0 there exists a point =-g (5) satisfying*
Ig(6) al <5 and If( (8)) f(a)-1>e -

1035
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Thus the sequence n x, = g (-33f) satisfies

Hence 2.3.111...:.Vn n
Ek-fce 7

.

...L.;

- al <1.- and lf(x ) --f(a)1 > £ .
.

n, n,, - -
,

a whiLe ri -*f(x ) does not converge to. f(a)- .

5. Find fim. .n)

2
n n -

n + n - n2

n + n

1
which converges to 1

2.

. Find the limits of the following" sequences

(a) n (1 + 2)11 ;

*Plaice converges to e < 3 , (Example 14-2e ) for n

2
sufficiently_ arge (1 +

1)n < 3 But,
n2

2i 2'
r 31/n

which converges to ,1:

(Example 14-2 ). Thus, by the Squeeze Theorem, lin]. (1+I-ln 4.1 .2

(b) n
n.

Take k > 2i::, then for n > k ,
...

rn r rr r
, k

(1.., ... . ._ < r_ . _w_n: k:. k -I- k +- 2 ... n k! 2n-k

nr!

1
n

Thus lim = by the Squeeze Theorem and lim = 0- (Example
11.-00 k-0:0 2k

14-2b).

-
1036



(t) 1 ' a > 0 ;a

Given E > 0 , let co =- .

.(d). n 22151 -, > .0 .

n

For 13 > 0 ,

log n =

O

Then if n > co , we have

dt in dt P-
t 1-13 -

1- 1 t
j3

choosing 0 < < a , we have

in

1

logan 1 1

na a . pna 2
-13n

-13

which converges to 0 by Part (c) : Thus

limlogn L

n--co na

< n -

1

14-2

7. Show that A + + ../2 g ;that is, show that the sequence

a : -k ak, defined by 4.t = , a.k+3. = 2 converges and the limit
is 2 .

1

By induction show:i-that an < 2 for. all n a1 = 2 and ak < 2 implies

that
9 \

aki-1 =
47ak'< 1/7 < 2

` On the other hand since

-(i)
2

ak4-1 2 ak

and ak S2 for all k , we have

>4+1 > 2 + ka ak + ak > 2ak

;whence. a, is an increasing sequence. It follows that a must converge,

say, to : r .

1037
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Then; apply the-elementary limit theoreMs to (1) and-get .r2 = 2 +.r,
hence r = 2 or r = 71 Since r must be positive

+ + 7.7 = 2

Alternative Solution: Apply the methods of Section 13 -2 to the iteration

spheme
k+1

+ ak2 for approximation to 2 .

8. Show that 241/2 777 = 2 ,'ilammely, that the sequence a : a_ defined .

by a
1

,= = converges and the limit is 2 .

that is,

21/2 .214... 21/2k 21/2+1/4+ .-..4e1/2k

21/2+1A+ 1/2k
2112k+3:

ak < < 2

co

k=1
< 21 < 2 .

Hence a is a monotone sequence bounded by 2 and therefore convergent,

sti.3 to r . Since r'2 = 2r r = 2 .

Alternative Solution: Apply the methods of Section 13-2 to t1e iteration
scheme

ak+1 1271c

for approximation to 2 .

9. The Fibonacci numbers are 'defined by fo = f1. = 1 and f f + f
n+2. 11-. n+/ '

n = 0 1 1 2 ... . Find fn4:1

f
n-o* n

Suppose first that the 31mit exists and set- r =.1im
f
n+1

. Since
n,-

(i)
fn+2 1
f f

n+.

f
n

+ 1 ,

1038 21



1/I-2

+ 115r is a solution of r
2 = 1 +r . Thus% r =

1
2

. Since r. must be

positive r = It remains to be sown that, the sequence

nn r
f

+1= converges. Now, write (i) in the- form_n fn

1 -,r = + .n+1 rn

..., Since f is increasing rn > 1 , hence, from (ii) lath > 1n+1
rn < 2 . Furtbermore,, since rn < 2 , we have again from (ii)

r > . Thus, < r <n+1 2 2 n for n > 1 . Hence

Ir
n + 1

= I(1 z) ( 1 + 1 ) 1 = 1 1
I I rn rn-1I

41where u is between and 2 . Thus 1r - r < it - r

n
2 n+1 n 9 n n-1

-.3-

and by induction rn < (7) ir2 - r1} < (§-14.)n-1 < (t)n-j--.;

1r
n k

rnl- = 1rn+k rn+k-l'+ rn+k-1 rn+k-2 rn+1 rn

< I rn+k rn+k-1I + + Ir
1n+ rn

k-1

'< E a-)J-3-
(2

j=n

1
n-1

Thus n rn is a Cauchy sequence and therefore convergent.

Alternative Solution: Apply the methods of Section 13-2 to the

tion scheme (ii) for r 1 + /5
_2

10. Show that the sequence

a : n -+ an = 1 +
1 + 1 + ... + 1 - log n2 3 n

converges. '(The limit of this sequence is called Euleris, constant, 1- .

It is not known whether or not y i rational.)

.
n n -451n kE ,

--f
dt

1
= I 4. dt

-sk-1 1-71
an = k E [411;

k=1 k

k
1

k-1

n+1 k1
- )dt > 1

k-1

1039 21
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_

k

i

t
7746. ( .20d-t.is negative. Thus,

-3_decreasing sequence. Furthermore, 1 + E +
n

0

since an > a
1141

, a is a

is an' upper sum

II
for t logand is therefore greater than lo n ; hence a' > 0 forI.
all n . Consequently, a converges by the Monotone Convergence Theorem

(Theorem 14-2h)-.

dt

11. Given a sequence a n an , form the sequence
n

a : -4 a =n n ak
k=1

(a) Prove that if lim-an = m the4 lim an = m .
n-00

Given e > 0 there-exists an integer v = N(c) , such that if

n > v then lan ml .<*e . Let k = v 1 and set

k

co = maxt2k 2 E ai kinl)
i=1

Then for >co we have

k .

Ea . + E (al
i=1 i=k+1

2

fts

+ -km

k
E al.

i=12 (2 - k)c Ign
2

k

E1ai1
< i=1 c

2
< c

A

(rb) Show that-. a may converge while -a doe's not.

104021
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Let' a n an = 1 + (-1) n Then

if n is even

a =
n -

E 1)k).

k=1
2

- if n is odd.1
n

Thus lim a = while a does not converge.

Nc°

12. Prove that if c : k c., - is a subsequence of b : k bk , then b is

a subsequence of a :k4ak' then c is a subseqUence of a .

There exist increasing sequences of positite integers

such that

hence

p. : k > uk and v : k vk

silk and ck =
vk

. But the composition

uv : k 4 (uv)k

of increasing functigns is increasing, henCe c is a subs'equence of a .

13. Find a sequence.with no convergent subsequence.

n --0 n or any sequence that does not have a bounded subsequence.

IA. Show that if k > is a subsequence of k ak then I_ >--k

From the definition of subsequence, i : k -'ik is an increasing sequence

of positive integers. Hence i1 > 1 . Proceed by induction: if

> k then >

> k +

1041 21 8



14-.2

15. Show tha't if k s and k are, two. subsequences_ of n. sn

satisfying lint s my ---S.4 ;"'S and the sets of indices
kap. -k

together include all natural numbers, then lim sk S .

0--
To arry given e > 0 we can associate i egers v1 and 4142

IS - s < e. if k > v2 .
k

IS - s4 I < e . if k > vl and

k.'> max (vi , v2 } then 1
I S - sk I < e .

i.k and .

such that

Hence if

16. Let a : n an be a bounded sequence. Let C be the .set, of limits of-

1

subsequences of a . (The el
a .) The least1.3.pDer bound of
of a and is written lint -a

smuts of C are called cluster points of
C , sup C , is called the 1-1-Trti.t. superior
Prove that lira an 11-C .

To each n there is a, subsequence. k -Po a
22k

-
1
n < .in < 11.m an . The subsequence2n where 'la

to -sup a

converging to a cluster point

As 3.se in Exercise 16 define the limit inferior of a as

where inf C is the greatest.lower bound or infinum of
lima cC. 4

Set- b).-= -
.

Then = .n a.

18. For each of thee-follOwing sequences

(a) a : 32 --) (,-1)n

(b) a : n > cos

=

47c= 1 , lint an = cos
5

1
a : n -+n

a =lima = 0n

converges

liar an inf C-,

Cr. Prove

find an and lint- an .



OP'

lim an = max(ce,13) ; l rim' an. = minfcc,f3

19. Let a : n --0 an be bounded, M . Suppose that

Al < lim an < lim an < A2

Prove that there exists an co such that for k > CD
Al <.rik < A2

If no such co exists with the;/stated property then there exists a subse-
a

"quenCe -+ bi satisfying:.either

-M < bi < Al or M > b > A
2

for all i . Hence, b. has a convergent subsequence c (which is then

also a, convergent sabsequence of 'a.) whose limit C satisfies either
4

C < an or C > A2 > lim an

of-which neither is possible'.

Y3., Suppose that a. number A -.is less than the limit superior of_tlfe bounded

sequence a. : n -* an that is, A < lim an . Show that a. ' has a subse-

quence "b : k -0 bk's-a4 satisfying bk > A for all k .
-k

1.

t

Since. A < 11m an there is a subsequetice, c : k --o ck = a. , of a
Jk

whose limit ,C is gre'ater than A . Thus there exists an integer v

such that for k > v

Ick -CI < C - A or ck > A for k> v

Consequently the terms or the sequence defined by b bk =
.

e--: are greater than A .

S .

r1. Let f be continuously differentiable and consider the sequences n -o an

and n.-obn which both converge to a , where an bn for n = 1 2 2 ,
. . . . Show that the sequence

flan) ) - f(b
.11

)

..- . ...
ccinverges to f (a) .

-.

-

.. .-.0-
220

, --,



1

2.4=3

By the Mean Value Theorem the,ve exists- c between a -and. ;b suchlpn
that

an - hn

Thus by the- Corollary to the Squeeze Theorem J4i.m.cn t.a

Theorem 14-2g for I"-, ,'llm f/(c n) = fv(a) .

n-e2

and by

J

A 22. Show by an example that the .continuity of the derivative is. essentia1.
in Number 21.

f

Let f : x x2 sin -I if x # 0 and f(0)-= 0 .

-1h -1
an = [(422 ot and b = [(m 1)11-] .

11.1m an = bn = 0 and f(an) = a
2 while

191

Then f q0) = 0
f(bn) = -b n2 Hence

f(a22) -'f(h:-) an2 + b2 2 16212'4-

an - bn'
_

an - bn ir 6112-r-

which convergeS to 717

AD.

Solutions Exercises 14 -3

1. Test the -fc,Iloviaag series for convergence.
OD

( a ) 1: 11Y-47717 ,
. C_n

n=1._

in-=f-1 - in 1< .
(VE7177 + 433)n ne/-

Thus

OO

13747717_- 14E-
n

..n=1 °

.converges by thl-fiat comparison test and the p-test.

V. 1

n=3 n(log n) (log log n 2

1.



T t(log t)(log log t)2 1

dt -1. Ic° 1
log log t 7 log,log.3-7'

Thiis

(c)

n=-1

1

n(log n)(log'log
by the Integral Test.

n=1

14-3

n + 1)2n

n3n

Apply the Root Test:

thus

ce

(d)
En
n!

n=1

(n + 1)ri

n3n

lim
EL~co

myn + 1,2;n
=

2 ; VT--7E
a 3 3

nm,co . n 3 '

converges.

Apply the-Ratio Test:, lim

thus r.ntconverges.'

n=1'

2. Does the series

Yes since

03

n=1

3 n! lim -- 0 ;
n n..0)

n )n2'
21 + converge?

n n n -1 1liin ()-. = lim n )n = lta. -, ,... - <1 ..

n +-1 n 4- a
a n...r. n-co 2:-.ce- 1 + -1)4.4

) n

1045



3. Find a suitable =

(a) 3-2n. log n
6

S2 (E) for each of the following siries.
I

IE
, 1 1

a log2 2- n log2 n I E 1. 1

n - n=2 n lo g n (,

d .0
Ar ,i

< r dx
. .

1 1
j k x log- x log x k- 1°E-k-`. "'l

< - <
. ,

Hence ,

02

'c' k ,'
1 I < e

n n -log n nlog2 n
. A

ti

*"if log k < e , that is, if k > e e . Herice we may take

St (E) eVe.

(b)
coE

3n

Since. n 7L-.1 1 n + 1,.. .,
-- 6i, . * '

.,
.-fcer , al L. n p hence, as in the

3
n-f-I n -. n

. -

,.. . proof of the Ratio Test, n < ;2 nki -for .1111 n . Therefore
3n 3

a

Go k f n
1

L_ n n . 1

3

I \-- I

n=0 nC) -' n=k+1
oi,

(..)ii.<,a,k+i
,31 ,3` ..

n=k+1 n".1

V

1 -
(2)+1.:

2 3'
3



e
-- log.which is less han e if k > 2

Iog e
r. ,

ti(E) = . 2̀log '3

CO

L.
n=1

. '- l 77§"
. n .

log I2T)

Hence ye may take

1 dt

-I-

Hence

03 k1E
n n .nk

which is less than
s. 2e) -(7). -..,-

.4. Shod that dn >:61,

- co

zin

n.i.
converges.

E n2n=k+1

co

< E -372-
n=k+1 k

< k

if: k > (p2 . 7 Hence wt may take

14-3

OM

4

and t .= Then by the Cauchy inequality
k=1

1047



3.4-3

2
n

k=1,

Thus the sequence ' n

convergent .
.

5.- Let

n

E sic { 1

k=1. k=1

is bounded and monotone

k=1 k=1 k

increasing, therefore -0

one-) ak be a monot decreasing sequence. Show that if a has

a subsequence k for which-.
j-k

.Given -any n , choose ik > 2n Then

1

ik

then E diverges .

k=3.

Thus E a diverges by the Cauchy criterion for series.

=1

ce

E6. Show that if the series of positive terms - a. diverge's hen
3.

j=n

diverges, where = E .

k=1

1 1
2n

>-

Since .s : n sn unbounded we can associate with eacP n an intege:q
,-

so ,that 2s <.

Hence.n n-f-u

Hence

i=1

n+v n+v s sn sh-

n+v 1E. ,.............
.. ai, _ s + ,A,, -> 1 - > .
anL i > sn+v 2

1. SIIV n
i=n+1. i=n+1

r.,

sr
a.

diverges by the Cauchy criterion for series.
.

oir that the Series of positive terms

Ea2 converges.

n=3_

3.048

a'' cOnvergesthen

n=1



.)

- 11-1--3

By the n-th term test, for n uf ficiently large an . Thus,

ao

2Thus an n.
and ant_ converges by the First Comparison Test.

n=1,

m

8. Prove that =. log .2n
n=1

Hint: Used E xk +

or

k=D

1
and integrate:- x

-1 n4-1

xk x,
1 1 - x

0

dx

.k=0 0

n+17 (-1)
k

k=1

O
_
n+1

-=c'dx = log 2 .

9. Cauchy Condensation Test) Show that if n an is a decreasing sequence

of positive terms then the series

converge or both diverge.
n=1

co N

2
n
a either both
221

n=0

.1a9 226



14-3

The proof-is based'on

If

itie

.., n-t1'n+12 - 2- . -.
.

2na .=- E ."
- .

> E
. 2`

....

k=1

E
k=1

m.ca,bound

c=

.
-

ar
n=2 +1 n

-2 n+1%

> E a 2ne
2n 1'

2
2n+1-

-n+1

k=2n+1

converges then

2n

24'a k 2 Z7. < 2 1:
ak2 . ak

k=1 k=1 . k=1

I
ka converges since its sequence of partial sums is monotone

2

d.

If

converges, then for v. taken so that

2v 2-
n+1

v-'.1 Aw

5- E
j=1 J=1'

, .

a 4- 2aan
..24=40

co

< E.2na n .

n=0 2

Maus the sequence of partial sums for

bounded; hence

k=2n-17I

2 > n. we have

a

. a -4

.
o



1147.:,3

4/1-

00

10. (a) Use the Cauchy Condeliation_Test,to_show that
n lo1g .1.1

diverges

k=22'

. and that 1
, converges.

n=2 log n)-

a

00 m 00 I
-

2n 1 1Since L diverges,n n log 2 L n log n
diverges.

log 2
n

:4,z i.,nlm2 .n=2 n=2

m 00

nSince
X:

. 2 _
2 1 converges,

31=2
2n(log 2n)2 n n (log 2)

2
=2

00

1
converges..

n n(log n

(1))_ Apply the Cauchy Condensation Test Ao test the convergence of
co

;E: n(log n)(log log

Apply:the Cauchy .Condensation Test repeated reduce.the:IirObleci

to convergenco.of

2
1.

log 2 n log Ln log 2]2 /og Yo l0 2 )n=1 n=1

and then to

2n
n: n

2 log log 2)n=1 . n=1.

and then to

Since

CO

n2 log 2 + log log 2n=1

2n

1
n log 2 + log log 2

.1051
-228

O



2nlim
n-00 2. log 2 4- log log 2 log 2

Q

it follows that the last series diverges and hence each of the
other series in the succession diverges..

1. Show that if

converges.

Solutions Exercises 14-4

ctr

ant and

n=1

-BY-the-Cauchy Inequality,

k=1

bla2
n=1

both converge, then

V

n m co

1,c)

2

5 k a

N7- 21 , 2 aic2 V
k
2

k=1 1 k=1 -k=1

)E: awn
n=1

abkl. is a monotone increasing sequenCe and therefore

2. Test 1: (-1)fl

MD

n

n=1 (n 1)2

converges absolutely, it converges.

for convergence.

No. Since Ilm
N2 1 A 0'.n

co

Is the followin true ingeneral? If x:

n=1

erges.11m cn = 0 'then ac
n n

n703
n=1

1c5222 9

-converges and

4.7



nIt is not. -COnsider the following counterexample. Let an = =
, n r-

vn

Then na
converges. by the Alternating Series Test, file

n=1

anFn
n=1:

CO

Ediverges by the p-test.

n=1

4. Test for convergence the alternating series

1 .1and a2k -=a2k+1 k
2
k

E ak
k=1

, where'

co -. oo . ca. co

It diverges-. If li ak converged then -1: ric:-.1-__

also converge.

k=1 Ao:k=1 k=
°ID. ..

Prove that if . I an a
n-i

< a
2

n--
co

an
converges absolutely_

n =1.

We have

for all n .and

.

11a 122+I a
2
+1< ---- ; 1.11=------- San

1
I hence lim

a
n n.co n

Convergence Theorem, Moreover,

converges by the Ratio-Test.

1821 < !al , then

exists by the Mbnotone

nf.;0:1 611:11+±
Um I LC aa.

Hence

co

Ti

32=1

an



1145.

TC14-5. Parentheses and Rearrangements.

The striking result of Theorem 14-5a and Theorem 14-5b is.that a very
complicated condition-is- replaced by a simple one:: If the limit of a'cdilver-

.

gent series can not be Eiltered. by .rearrangeraeht- of its terms, then the series
is absolutely convergent (and conversely).

/ In summarye the section. demonstrates that convergence is suf'fi'cient .fo'

the extension of the associative law to infinite .summation,-but that the

extension. of the commutative law r equires the stronger condition of absolute
convergence. 4.

Solutions Exercises'14-5

Prove Theorem 14-5b for the case r < 0 .

Choose

)
i
1+1

so- that 1: a-k r 2: a
k Choose

k=1 k=1
.

i
2 "i

1+
1

< r < ak +

X=1

2 > 1 +.1 so that

k=1.-+2
.1'

Continuing in this manner constuct a rearrangement which. converges to r .

2. Show that

e- e
y

=

n=0 n=0 n=0. .

xty
'See Section 8-5.)

c

to conclude that



By Theorem 14-5c (Cauchy Product),

Since ex =

E.

ist

n=0 n=0

ao n

14 kt. (n -

x y
aa-kn

k=0

n
):1 xkyn -1ctn)

nt \le
n=0 k=0'

E 1.
-7- ( xn.

n=b

co

EA:7'(Section 8-5), the conclusion follows.

n=0.

ti

111

232

ti

4

ti

,

l4 -5

-



14-- 6

=L -6. Sequences
- _

Uniform Convergence.
s

It is important to- observe that the iin-r-Porm convergence of by

n=1
itself is riot sufficient: to permit differentiatign terms -by -term; for,this,

co

uniform convergence- of the series. of .derivatives; . un , is the sufficient

n=1

condition we employ ,(Theorem' 14-6c) . FYr example, the series E sin nx
2

n=1 _
n

converges uniformly by comparison with E
2

, but the series of d vatives
, . n=1 n

=

E cos x
does not even converge ai, x = 0 .,n

31=1

'Solutions Exercises 14-6

Show that each of the. following series converges uniformly:on the setsspecified.
co

2-
n 1 n

(b)

[sin nx 1

n2

E sin xn
n

n=1

co < < co

Since ix
1 It< , 'sin xl < j x f ;hence,

co

E X Xi'
n=1

1.056
0 3

sin x.

n 2n
d.



Ffir

4r`

0 < x < 2 ( <
' x + 1 _3-

2. Show---t.)aat the Weierstrass M-1Test is not a necessary condition for
unigo3pn convergence.:-- .

!
Let -) Un

deb
X

for 0 x < 1, I
- - 2 n n

1
+ 1
and

.e.?

1,_ for x = 1
--an ------,-

linear between 1, 1 + 1N
) and

..

gii.F-_3. 17

and between - and -(n1 1- -f- 1
2
1

n -
1-

lel 1.-r-

2 n nr- 1) < x 1

.

n

an(x)

n + 1 n -

1( 1 IN
2'n + 1 n'

1
n 1'

convergeS. uniformly but m,sx.0 la (

0 <x 3--2

, .div.rges. Hence the Welex=strass M-Test cannot be app

) 1 = - and

11.

does not converge uniforialy on lx1 .

1057 23 4
-



X4=6

g..-

Take c = Enid 1 > x >
n

n+1.
Then ..[E xk xki

. .1 x
k=0 k=1

Thus' E x d'oes not converge unifo on

In Example 1-6a -and Example 14.-6b show for each fixed e <1-, S2 x c
cannot be bounded.

In .both .cases, fob every c <,1
as a bound for Si(x,c) it is always -:posible to find x and >
such thai: lun(x) f(x) > E .

no matter whai number- (la -is proposed-_

In. Exampl 14-6a-, we llarVe

n(x)

fOr any > CA and 10 <x <
2n

-we- have for any it > _ CD - and -c'
.< x <

4.3a

x) = (c):.
..

A eequence of'.-fundtions

f -on Ca,b3 . if

(a)

f

s said to converge in 1the mean-to

tf(x) - un(x)]
n-e3 a

Prave if u converges' iirti-rormly to f
in the mean to f .

Given > 0

O

ThuS

= 0 .

on Ca,b3 then u converges

there exists co such that if a > c then

le(x) - u (-x)
b - a

rb
*** b

(f(x) 1-111(X)

)
a- if(x)

:7'

un(X) 12d..1C



(b). Show by an example that u carkC6nverge
pointwise.

1- ,.-:for Ol<"" xl<71n-,

Take : x
0 for <n

and f . Then

<

,1

1
rf(x) un ( x)32dx = him

0 - n-03 n
=

.3.

Show that- i:f the series

a
(t) 0

n=-1

an -cos nx. bn

:converges fortay'to f.(x) ,on then

f(x)- sin

(The series (1) with coefficients defined by Equations
cEalede the Fourier Series of. f .)

Wehave Lt cos nx sin mx -dx 0 for all
,

sin nx sin mx dx = cos nx cos mx

.
iz ; and

)

for

d

for az = =.112

Multiply by sin rix or cos nx in *(1) and apply 7a.rem 14-,;.-.16b. to obtain

J

MN.



Solutions Exercises l4,-7

. If the series anx and

Ax

on -air 15aerval 1

CC

b x -converge on

12=0- --
ccr

bnxn = E
II n=-0

a x)_ ( b xn)n n
n=0

(I) Use Theorem. 14-3a.
(ii) Use Theorem 14-c.

z c xn.

-n=0

p where p < the

ixi < R show that

k=0

From Theorem I4-7a prave the c.laim. of the text that a power series
03

ann
either

. (a) convergifor s11 x , or
(b) there exists a nuriaher R .such that the series converges fox:

Ix' < R and diverges for 'xi > R .
.

'If the set of values, E for whiph. the series'

r-then 'E = R. by TheO.rem-1477a, since, given any
ly I -> x , and the series converges at. y . If

converges is unbounded,

x there exists y ,

E is bounded let
= sup E . Thus, if Ix! > R the series must diverge. If IXI < R

there is a y in E with ixl < y Hence by Theorem 14-7a; .the series
converges at

3. Proire -that, if. E a xn

hes' radius of convergenCe

.of convergence 132

has radius of convergence

R2 < RI then



It is clear that for lx1 < R2
n=0

b )xn converges where B2 < x < Rl then since

the difference

k=:-.)

02 CO

- .

b )21. - E bnxn

k=0._

b -xn = E. (an b )21 - -a- x.
-n n

n=0 p=0 .n=0

If

converges-0 bu-Uthis is imposible since lies outside the interval

-of convergence of

'CO

b xnn
n=0

'Siimu that the .radius _convergence of the power- series

..R

0 if = CO

co lim niF-TrE = 0

in all other cases_ R = lim

: 7

Choose -r1 so 'that r <1 r. < Then- R r
<.

r
< 2_- .Hence,

. 1-

there exists

1'

co such that for "k > co .,,-ir411. T <

lx
--r--------

r
k

1
... o

_.... r" ix-ik

1 _1
co k

, the comparison series

converges- 17'n'T f'ormly- in ixi

.. _Since
a

for, k >7 CD Since

converges ta.nd-

< r by the Welerstpass M-T-est.

a xn

<.r we



I > R- choose`'

_ .
n4

-then 'in. a stibSequence `-'17. I satisfyingn.

Then
2

SO .

(Exercises

114 2., Vo. 20) Hence lx1 > Lic or la ilk'r2 r .> 1

Thus

m

a`nx
n

710
diverges by the n-th term test.

Find the radius of convergence, for each-of the following power
series

co

(a) (n 1)x11
n=0

(b) E
n=1

2nxn
n

. Apply. the Retib. Test

_Le): R. = 1 ,

(c)

(d)

k nn x
n: ;

(a), .(b)., and (c) to obtain
(b) R ,,2-- (C) R = .03and'Air '

In(d) by Section 8-6 Equation (13), 2()11 <nt <14-n(P.-)- so that
-e ---:

LEL n nin72s.ln )_1_51 nil--
1/qm whenCe lim n. n: 1 xln 21.E1= e- by the--e - `n/ e nne.ce

Squeeze Theorem. ,Hence R = e.

Alternatively, apply the. Ratio. Test to obtain

n
= (1 = e

n-co

.69
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V

Solutions Miscellaneous
. nSecond Comparison Test by proving that if lim. --= 0 , wherea

and the a converges then b,n convez;ges
n=1 n=1

_

an > 0 , for. all

"absolutely.

There exists an co s.uch that for . k

k
53 ".k

=".;s:.-
-4

< Hence by the First-Comparison Test Ai: lbn 1 converges.
n=1

2. Let- "E be a convergent series of positive to
. n=1

to
an4.., bbl
a b-1- < ""- , for all n. then E an

n=1

Ian'Tile sequence n -4 is decreasifrg and abOunded below by- 0: hencebn
ate_ - . - .

e-convergent. By the Second Comparion Test, or by the preceding exercise,
if .1im ----211-' = 0 the convergence of- E-b .implies the convergence

q nn-co bn
n=1 .

Prove'ir

converges absolutely.

la In

. Let .- a
11

n=1.
be a. series or nonnegat\l.ve -Eerals-

.1/
t.

o.ve it

la a. > 3. -I- e .> 1 for n. > G3 , then E an .convergesn

n=1. c-
( n - 1) <1 - e < I thenan+1

a
absolutely., but if

1°63 2 0

CO

Ean diverges.-
n=3_



Hint: Use the preceding exercise to compare the given series with a
p-series, where p.,= 1 c

'If n( an - 1) > 1 + e for ,n w , then
ettl a 1 e 11 +e

an+1
1 <

1- + (l.+
72-)

Apply NUMber 2

)

/ + 14-e
.L. f - n

4.

) 1 .
)

/ 1 'n 1!
1te .

n
14-e .

(1
..

)
1.1+e
n

1

Thus the convergence of

ro .

n=1

L 1
1+e

n=1
n

implies the convergence of

Divergence is handled analogously."

. Show that each of the conditiolas in Leibniz'S Test (Theorem 144b) is
necessary for convergence.

co

The diVergent series 1:
n satisfies tonditioni 2-rand 3 of Theorem

n=1

14-4b, but *not condition 1. -..The divergent series of Exercises,14-4,

Number 4 satisfies'conditions 1 and 3, but not condition 2. The-diver-

co

. .

.gent series E (-

:n=1.

condition 3.

)n(1 + 4-satisfies conditionS and.2,1out notn /

5 Prove that. ai .converges if

i=1

(a) sgn ak =-sgn

(b) k -÷ lekl nonintreasing

(c) lim ak = 0:.
k-a3



As In:Theoreir14-4b, ire find:.that-

are monotone. sequences (one is nonincreasing and the other nondecreasing

rather than increasing and decreasing as in the proof of Theorem 1/471-i-b).
. .

Then continue as in

6. Shaw that ir .14,.,'

Thearem

a a
ni-1

an

14-4b.

- r then' the sequence n --> an converges'n-03 a -n a
n-1

if r < 1- a.v.d diverges if r> 1.

Define the sequence 1 k bk = a- - . Then

aii-'= a
0

land we are given .1.11ii 11.Dt1.-1

k=1

converges if r < 1 and diverges if r > 1 .

; hence 11 -4 an

Translate: the Weierstrass 14-Test as 6. criterion for the uniform conver---
genc- of a sequence of function. u n ---> u

Ian,. is the n-th partial sum. of the series
. -

. Thus the sequence

n

E(uk uk ) , where we

converges uniforMly if there exists

. a convergent series of Constants E 1,4 with.

-n=1



4

I (x)
for all.x - in E (x)1' < 3K 'and

u (x)
co.

n > v , then E un converges uniformly _in E..

n=1

Compare

have
.

<1 all

with a geometric series. For every integer ,k > 0. we

for all x E
, --

Welers'trassg-Test.

,t;:ik(x) 1 LS r 1 <

< rklu.v(x) 1 < rk M

Hence un E-converges uniform_ly in by the
.

n=1 --

03

9. 4L telescoping series is a series of the 'form E n - a
n+1

; . Give.

n=1
° necessary and sufficient conditions for the convergence of a telescoping
series..

.. ,
nt.--)

The n-th _partial sum, of the telescoping series- - aIsn: n=1

Thus the ,convergence of

Eis equivalent .t;t1:;.e convergence of n a
.1c-A

an

lira an
n.wm

irthen
--r4"

03

E =
11

.n=1

10. Prove 'the Cauchy Criterion for uniform .convergence: a necessary and
sufficient condition for the -mil form convergence of the sequence of
functions u :..n . with common domain E is that to every e;>. 0

-there- exists. co = Q CO Such that .if > aa then
lu (X) =-.. .(X) I < for all. x in E .



Suppose that the sequence u has the property stated. Then _for each

E the sequence -.11 n (x) converges by tie Caucaly Convergence
Theorem.; .sy to U(..x) ; i.e. u converges pointw-ise_to U x -4_U(A)

Given e > 0 , .,if n > = S2 () for a* k' > col

1u(x-) -un(x) < lu(c) - uk(x) + Iuk(x) - n(x) I

Novic±o; each

< 111(x) 12-.(x)1 .

take any k 'large enough so that IU(x). lak(X) 1 <

Thus, lU(x) - un(x) I <.e for all x in E ..if n > a . -(We have

obtained an Zti independent of x , although the details of the- proof .

involve a choice of k
.
...which does not depend on ,x .)

u converges uniformly in E ., say to U , to each c
.- ..

associate a, = 12 (e)' sp that for n > c4 , 117(*) - u
13.

(

x in E ... Hence .1f 1;;m n > ay_ where all = 1 (-f)
in E

- um(x)I < IU(x) -<un(x)1 IU(x)

e e -.< + < e

:-

11. Show if -the--series of funCtiOns v

the series df functlons

n=1

un. wit: common doMain

n=1

Conversely, if

> 0 we can

x) 1 <,e for all

we have, for all

converges uniformly on

property that lun(x)I n(x) for all x c E , then

uniformly in E

E , has the

E un

h=1

Given any . > 0 there exists an (.0 such that, if m >

p

n

v
Cx) =

e. E Consequently,

n n

E uk,x,1 _< E
kn-f-1 ..ka-1-1

vk(x) <.e

(x)I <
k=13.+1

tir.

converges

then



E and n -> ra a) Hence,. y u
...

n=1 :e
, by the 'Calacy-Criteriori for uniform ,convergence. - (See Exercises

.sopverges 177tgorkily'in

(a) .

\\.1

C..

Consider a series of functions E n uniformly converggrrt to U

on (E Let f be a .function defined and bounded on E
I

!fix) "< tei . Prove that E converges
22=1

f E =
n=1.-

For each positive a s there-:exists an cri = 52(e) sUCh that

IU(x) - E :u(x)i_< e
...whenever n > as If n > cal = V .(p/- .,1,. -ther!el A

k=1

)U( x) fqx uk(x) I = f (x)flu040 L ii( )1
Is=.1

(b) Show by an exsunp1e. that the boundedness- of -f . is a necessary
condition in Part (.*2.).

x -) 1.- . ThenE = (0,1) : x
02

1 1 1.E x ok
k=0

. But

n
1. 1

-x 2k x ank=2.

1068

>-1 for x 1
2n

<

245



'Nat ----., . .:
13. Fiiid.the T a y l o r expansiorr.of f : x . ' ( 1 + x.)cc. a not it positive (

-N.
- c integer,. (the binomial series for exiDOnexit a)- and find- its radius of

convergence. ..-.
-'.... .

By . induction, show that rCO X) .= a(a -

thti. binomiaZ series expon.eni cz - is

(a k 1)xCz Thus

a(a - 1) ... - k 1)xk
kr;

k=0
Applying the Ratie Test,

a(0: - 1) ... (a - k)xk÷1- . ki

= lin, i

k -I- 1 xl .= I
---_,

.. k.co

we see that thg series converges- for - <1. and dtverges for
HenCe 1 is, the radius of convergence of_ the binomial series..

>1

By using the Cauchy for& of the remainder in Taylor's Theorem, (Exercises
NO. 9(b)), it is possible to pro-ire that the series not only converges,

but converges to the function f for Ix! < 1 The technique of proof
parallels that -Of Ekercises 13-3, Number. 9( c ) .

.Show.that the radius of'Convergence
art.sia'x

of the Taylor series- of

NAT- T2k.) ttak+L

(2k + 1) (1(02 22k.k=0
(see. Exataple 13-3b) .is 1 .

Solution 11, By the. Ratio Test, since

(2k-co 3)[(k 1):3
112te

t2k4-3 (2k + 2)
k 2 22k+2 (2k)! t .

( 2k + ( k ! )2 22k
-t2

the series -converge S for t!1 < 1 and divergeS :for I t I >7 1 -whence
the radius of convergence is 1 .
Solution 2: By Exercises 14-7, Number- ,

- 2 2k1/((A 1)(1d) 2.

Now apply Stl,rl'ingts formula (Section 13-4) to obtain,

1669
;R 4 6-?-

7M-



-

a t=- 1 .

t.

(2k + 3)21rk

.2k

1)[ 2-1/7or(h)1:"]2

C.

Show that if the continuous function (x,y). --+ 4, (xly) defined in the -
xectanglt

t(xiy) : Ex - x
0
i < a.

P 0IY Y I < )--7. -
satisfies ab <1 , a A <,c , wheie

(1)'
imax(14>(x.,y)1 : ix - xrd <a ., IY .-- y I < c) =A0 - .

`-'

and - -
(2) max(1Dy4,(x,Y) I : lx -x

0 '
ly - y 1 < c) = bI <a

0 - 2

then the sequence of functions u : k --> uk defined by uo : x --+ y0 ,

x
ult+i(x) -,--f - 4,(x,uk(x))dx

xo

converges to a function U whic,h satisfies the differential-equation

'AM,M = 4> (x,y) for lx S.--<< a ,42446,
. .

and the -initial condition y = yo at x x0

for x.Ix -: 0 -
.proceed by induction:

-

if (x) --* _for - x iPI < a' "then-
-

a

x
yo I 5 .: - I 4 ) (x i li(x))1dx . </a A. <. c .....

-

-...-

ru j x0--') -;"" _:

1, -Nowi let-. '?.k = ma:41-uk(xYr- 3.2.k_i(ic) r : Ix - xo I < a ) .. 'Then, for. --

12c - xo 1. a / - .. . ,-.'..
.

-
. . -..... luk-i-1(x) - x),I -ix l'4*(x.r.,_uk. (x5..-.- 4" -(c: ls..e.

g i X 7 ' i- '.0
The integral in this inequality.is equal to. .

1.3D SY/01112kt x) uk_i(x) Idx

xO Y

for sOrae'-y = f( ) betwe uk_i.(x) /4-121

9



17401 x)- 13Pc)41 b dac. <Lab
0

By induction, Xk < . Since, forar Xk-f-1 5- abXk
Ix - x [ < a0 .11V

lu (x) un(x)I = _ un+j-1(x)

k 7

< E lun÷i( ) _ u. (.)1
n+j -1

i--=1

< E X
n-i-j

k
< Ei(Sb 21-i-j -1

I

04.

E(a.b)i

J=0

X.2.(ab ) -0 .4

< 1 - ab

...since the seeplence n ---+ (ab)n ConVe-ZgeS ft, 0 the -seqUence u Satisfies
..-;thebauchy "C-riterion for trni -Po= converge5Ce. ',Consequently, u converges

wniformly 'to a function U U. For each fixed x- --...; .
n -)..4)_(x,un(x)) =.1-- .u..74.3.(x)' -

converges_ to 4, (x,U(ic)) by Theorem 14-2g.... 121-1`. act, the' ;convergence
. is uniform since

14 ( x,U(x)) 4at?cluiltxj) I... i D3r (x,y) 1 1U(X) un(2;)

<)::0 Max0V(x) un(x) I lx - x0 < .

by.=4.Theorem (x,U)4 -< a and

.U( x6) yo



1 M

A-A16. Find the value of
sequence n. x
values for Which the sequence coriverge

If the sequence converges, pay to
theorems r satisfies ar ,= r .
at all, a must be E, value of the

-

aaa More precisely, find the limit of the..
defined-by x0 = a 0 xn4a = a n - and determine the

r , then, by the elementary limit
Hence, if the _sequence is to converge
function _4x1 /x: x (see Figure (a))
1

1 1

-71 72r1 r2

'a = r

Thy function f: has

Figure .(st)

a uniqUe maximum,
convergence of the sequence, we require
the sequence must diverge.

First we shP11 show if 1 < r <
then lien xn = r

. by the methods
we have

(1)

srfwhere

.liee. . , .at e . 'Thus for
a .< e and for.- a > e

< <-r)
and if. a. > e then x diverges. We proceed

of Section 13-2. For the function 0 : t ( ) t_ at
.

r xn4.1 = 0(r) O(xh)

= Or(tz.)(r - xn)

u -lies betwiVrr
inequality fo5, 0' (u) =
(ii) 4'2.0 < 0/ (11) <

r .-'N 1. < u -< r we have' the.
._

a < r log r < log r < 1
Sincg. xo = a , it follows tha 0 < ro" (6.) .< 1 from .(ii) , hence
that r > . -Proceding by inductloir 'we !dbi!taln

:
1072
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a

x < < r
Thus x is a bounde4L-144creasizig sequence and converges.' Thatn.

xn ='r follows from. the elementary limit theorems.

Next suppose

Obberve, for
function t :

hre a r i.

< iv)

0 < r <1 . In this case, with a.= rlr , we have
0 <a <r < .

0 < e <1 and p < q , that e-P >-eg. ; 1.e., that the
-et is decreasing. Witii this observation; taking

we have from ( iii) ,

where we recall that
.have. from ( iv)

Iii general, if

we obtain si m 1

and, hence,

xo =- 1 > x2. > r > >0
= as and

xl <

x1. = a . Again, taking = a

< x2 < x0

r <sxk < x2k-2

r > x
2k-*-1

r < x < xak

""1

we

-14

We see,: th -that the sequences k . and k --t are,
respectiv decreasing :,and bounded below by r..and increasing and
bounded above.by.,. r Thus, both sequences c nverge but they'Nneed
converge to the same limit and furthE_Inves gation is necessary.

"Set p = lim x2k and q = x2k_1 Then:
k-co 1_2/

Pi> r
Ncrw,_ from

x2k"-1a = x2k. ,

not

_we= haVe by.the elementary limit theorems

°
.
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(vi): a
q

.= ,

From (vi) we have. also

aP

Thus p and are both zeros of

(v11)

a = q .

.4 : t -3 a - t .

Let 'us investigate the solutions of this equation. Observe first that

is a solution. , To investigate the behavior of lif we examine the

t'
behavior of the derivative Ift where,, with.. g =oa ;

t
.1.1rt(t) = a

a
_a

t
(log a)

-o = g log g log' a. -p

In Figure (b), we sketch the graph.

Tl = f(g.) =. g log log a - 1 for O <g <1

22f it. iN`
e .

(0,-1)

In the interval (0,1) f has a maximum.;

1..e -

If a > ( - j ) then Ti.< 0 ; hence, * (t) = r(g) < 0 -r-rkOr' 0 < x <1

- (except for the limiting case e= (1)e when there is an isolated zero

y = -1

Lafft_LI 11 at g =
e.

at g =-- , but thid does not 'affect the-monotone cter Of ; see ,

Exercises f5-4, Nt). 14) . Consequently, for a (2-'-)e the zero of (vii)
e

'is un4que.\\ We conclude in this case tiha-t p q r. and the sequence

converges (Exercises 14-2, No. 15).



Finally, we prove divergence for r < 1
or' equivalently,-. 0 <A1e

Recall that we have strict inequality

x2k-1 < r < x2k.

`e/

for all k so that xn A r for any term of the sequence. Now since
r < 1 we have for 0 r a 0e.

J

0'(r) = arlog a = log r .

Since 0' is continuous, it follows. that P(t) = a
t

log a < - C
on some neighborhood I of t = r . (Here we may fix C = >
or use any constant between -1 and log r .) Now we show that for
every u there is an index k for which xk lies outside I , hence-
the sequence cannot converge tO r and therefore diverges. For suppose'
'xi LI for'some x

i 2
where. I >co . If x

i-4-1
is not in I , we are

. o
done. If x:3 1 aI , then from

x 1 r =.0(c1). - r

= O(xi)

l'r)

d Note thatvhere u
1

is between, xi

1.X..-
. i+1, I = 1.02(111)11x1

Clxi 7 r1

thus xi1 Is farther from r than

replaCing. i by i -4- 1 .in (v1.11),

- ri > C xi+1 - rl

and from viii)

Noy .xj-4..2.

obtain

xi Since xii-1

we conclude that

is outside I .,

r 1

1

elki

we' have on

or'we msy apply (viii) in the same way and-:

. . .The .process Must terminate since. > C"!1'xi -7, 2-1 is greater
. .. .

.'than. the radius.;ot'I for some suffidiently ,:and if no term
between and--xi+;1 Iles outside

7,-

252



4

and Xi j.
complete.

/N.

IXi +-r1 >c1x1 - ri
trust lie lout side I. Thus the proof of cliveresence. Is

-

:

vs-



'Teacher's Commentary

Chapter 15

GEOMETRICAL OPTICS AND WAVES

15-2.

In this chapter we have attempted -to .show how broadly the -method's of the
calculus enter into the development of *a --science (*in contrast, to Chapters 9
and 12. which pursued restricted paths. of..mathematical deVe...1tent).. The
sciencd''of,optics chosen for this purpose.ls. exceedflig?y..ri and leads
naturally' to mathematical ideas outside the. confines of the ext (in particu- .

tar, the ideas of multivariate calCUlus). This 'would remain rue even if it
were possible to ex-then e text-beyond its pres$ft..fraine.-andinclude.tradi-

'.. tionalimultivariate. calculus and much of..jaigher. suialysis.. That being so, thft,-
;chapter comes-fitly at. the end as both a'remembreince-'of things..past and a .

-forerunner of things to ". come:

The text of the chapter -is designedrather far individual reading:than
. . .,"

;groupc.12ssroom activity. The approach- is Mathematically informal. and non-.., .
. . :

rigorcius as ...is appropriate fors cursory e.10p1Oration of e.: broad area; such
Matters

,.

as exact error analysis. can wait. until the etudent--develops a more'-:-...,: ,.. .
'Spacialized interest in the'SUbject.

Solutions. Exercises

Show that. the shortest path-froms a point A . to a point B by way of a'poInt on a plane mirror, must necessarily lie in the plane containing
and -B - which is perpendicular to the prane of the mirrcir..

- Choose xi y, z- coordinates so that the plane of the mirror is given by
2 = 0 and the plane through A and ,.11.2, perpendigular to -the" mirror
plane 'is given by x = 0 . Locate the origin so that A is on "the

;.z-axis. Thus A = (0,0,a3) and B = (b1,00.1b3) . Let C = (c1,c2,0)
be any point on the mirror, plane. Next, show that if C .is not in the
plane x = 0 , c2 # 0 ,- -then the :path ACB .1s longer-_than the path
AC4E.B where C = (ZS, 0) , ..( s ee* figure); as followsi. The two path
lengths *are

6



15.-2

CET

4.P

.:But, from

pal _ 1a32 2 + c 2 + c
2
2

1AC 1

it is immediate that 1AC I > IAC

IC*B-1 =1(C-1 - b1)2 < (c-

On' addition, L > L follows.

b)2 2
'-a2 ÷.

.- (a) Equation (2) is a necessary :but not- sufficient Condition for the
path length L to be a minimum ". Shaw, in fact, that the: condi-.
tion -a = is sufficient for a minimum.

Differentiate again in

dL x
= sin .a sin Y

dx L
2

to obtain
._ . ,

d2L 1 cl,L1 dL1 d - x 2_
2 =." L

d.x 1 dx L2 2- dx
2 Le

. (T1 _ I.:0 a) -1-' -(3- .,,. -sin r)1 1 2

-I
L
2

2, := .-.1.. cos a-4- -- caster .
-1" - L

2

-11Thus the graph of L is flexed upward = 0 is a sufficientdx
'condition for -an absolute minimum

(b) _Show. that T = a' corresponds to the shortest path by the methods
of elementary geometry. (Hint- Use the image principle. This .
was the method used originally by. Hero-)



15-2

Let S' by the image of S. in.the mirror plane 971 . Let B. be
any pOint of . The paths SBi and St_BP - are equal in length,
but S' BP will be minimal if .and only, if STBP is straight. In
that case r a as claimed.

3. Show that [E2] . yields. the longest possible reflection path- between
diametric-el ly opposite points of a circular -reflector. (Figure-fre-15=2fci))..

From the accompanying figure, the

path length is given as

= 2a(cos es + sin 0)

where 0 < 9 < s . ConseqUently,2
a zero of

dL
= 2a(-sin e +cos e)de

can occur in the parameter interval
only at 9 = as predicted by [E2]

But 4W

[ > c;
de I

<
,.

e
B =2

At conclude that t has a maximum at* 7c1-4

a 0 P .

. 'Show to .a first approximation for a small ape:rture conca-ve mirror
(Figure 15-21"(13.)) that all ray§ from a source on 'the axis of the
m.rror at distance u from the mirror center are reflected through a
point at distance v from the mirror, where

1. _.1 2
a

r

1079



'.-15-2
sof

Let 12 be the foot. of the pen-

Pendicular .from.. A to-,the. axis

of the mirroi... Set c .7
and ignore e higher.,

than fiisti:order -(s-Mall aperture

approximation)... We have

.$ a E a(1-T7) = 2a

. a

where a is the radius of the

mirror. Consequently,

,40,
E0 = can. V - v

tan a =
e

sa c
a - 5 a

Since we already have -tan.95 it follows that

E 2E
v a U- Ire

from which the result date.



5. For the_stia-circular mirror show:that the

;'corztOponds to Da
2g( a,P) = 0 .

From.',-(10) and (24).6btain:.,

(a cos a - 'X)tan .'- (a sin a -

cusp ofJhe caustic

Differentiate twice to get

.g(a,P ) = 8(a eds. a - x)sec
2 2a tan 2 a

- sect 2a sih a.- a cos a tan 2a

+ a sin a ,

which clearlY vanishes when a =. 0-

6. Consider the elliptical reflector
2 2

xZ-. =
a
2

b2

Show that all the rays originating at one focus of the ell
reflected through the other focus. -(The foci of the ell

-7-7points (± c0) wherec=a)77 -b-

-Referring to the figure, s ow that

tan 43. = tan(a -f3) =tan O2 = 4..an(T -a;

For this purpose use the parametric

equationq for the ellipse,

-x cos e y =.b sin e ,

from.whIch the slope of the normal

N is
-

tx .

b
atan a - = --tan. .yt

We have

(a > b) .

e are
re the

b-sin 0 b sin 0tan
a cos e 4- c '

tan T
a cos a -

Enter these results in the expressiOns for tan 01 and tan 0
2

-to

obtain

tan 01
= C



Verify analytically that the radius of curvature at a point: P of a
. ,

..--,

.

7 reflected eikonal for a semicircular.mirror (Figure 15-22).fs R + 1 cos a,

where R is the distance from .p along the ray' to the mirror. '41-'

The radius of curvature is distance alongthe:ray from P to the caustic,.

since the caustic is the'evolute of the eikonal. Let I be the point of
P

.intersection of the ray with the mirror and J the place where it meets

the caustic in Figure 15-22. - We have I = (-a cos d,ta sin a) ,

arid, -from the parametric equations for the caustic, (26)' end (27) ,

whence

j (r 11S2LP41 2
2 in

2
ce)-, a sin3 a) ;

= C(a cos a (2 - sin2 a

a cos a
2

,a sin a cos-2 CO211/2

Find the edge ray caustic for a parabolic - disk with edge given by

Y2
I.

Use Equation (13) of Section 11-6 for the evolute. We have from
Section.11-:6 (12 ),:wiih'y as the independent variable,

Thus if

2

(f.17 ,Y)

K
(4p2 y2)3/2

(k,T1) is the center of curvature corresponding to the point

(-2p,y)

)62 y2

14.p12

oni the parabola,

2
g 77- -

2p
(41,2 .+ y2 )

Ti = y - y2)
2 `

Eliminate y to obtain the cartesian form,

a "seraUbical parabola."

4(i -I- ?11)3 = -Pe ,

1482 7
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Stlutions Exercises 15-3:

. Consider a point source under 4ater 61=.T and the rays for which.
itN

,-

sin p < i . Determine the virtual caustic for trie rays refracted into
. . -

,air and show that.one eikonal is 4,

'P'an ellipse. (The:apparently
different positions of'a small .

...e.-

Pell,?le in a diSh of water as seen
.1from different. view points can be t a

described in terms of this caustic).
(Hin-ET IntroduCe the parameter.

15 -3 .

cos cccos e = -----
cos where the angles. ap

and 0 are the angles made with
the surface normal in air and water,
respectiveky:)

#""c--
. t-

.

The problem is to deter- Mine the caustic of the
,;

-
The iegiaation. of such:a-ray-Is'..

ci}'

rays on the4air side -of..

y. tan Cz - a tan (Et = 0 .

We can express a in terms of p by'means of Snellts Law

(ii) p.. sin a = sin p 44
..., _

-.and replace Y using
r. _

cos a(Jill cos
cos p

FIrtt, we dbserve in from (it) and that

(iv)

Furthermore
.

whence.

and

°- -

tan. a = sin a - sin P tan f3 .cos a cos e cos f3 cos 9

cos = cos a 41.- p.2 sin2 p
;cos p.. cos p

2
= (1 , 2)

1.1.

2
cosh p cost p cost

cos
2

p
.2

- 1
2 , 2

9- cos

4



we then 'obtain

(v) tan - sin e

Entering (iv) and (v) in (i) we then have, in terms of the parameter

(vi) g(19,P) tan e =xµ2 7T-4-,a sin e = o

where P = . To find the caustic we determine the Point (,y)
on each ray Which satisfies both (v1). and

. 110.

De- g(61 P) = + a cos e = 0 .
F cos2 e

:
Thus the parametric equations for. the caustic are

A
(7-11i) x - a

sin3 e . .y = - - cos3 e 4

7...,,..;:- J---7737
p:

,

N,.,

or.O.iiiartes Ian: form, 2
s.

- 1,614-.735 2/3. 1 a2/3
T kilY/

mpare the solution to Exercises 11 -6, NUMher 11,

Equation (38), to -obtain the elliptical eikonal .

.. .

e . J
ft -'2.. 2

2- -2 2 2
a GI. - 1) a p. ''

- .

or use
4
Section 11-6, Equation' 17(b) to obtain the ,involutes of the,caust1.6

-
For this. we observe,that arciength a along the caustic is given Inobserve-_

r...

or Section 15-2,

_terms of 9 by

g

.

d a 2- dx 2 f cly12 9a2 cos .9 e8Eµ2 - .cos
2

e
de() de - 'de'

-

_2
P-

2
(

Take the square root and integrate to obtain
. _

a(µ2 -
12 3/2

1084
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7.

'where tkv3 constant of integration is omitted qirice it is provided for

the equativn for the involutes. In terms of- the paratheter the

involutes are given by W

whence,
.

x C 7 a`ax
de? .d7.

cosix

?c - PirT72-. s e sin e

342 = cost

y .= -E4.1.'cos

-which gives the same ellipse. as

(ix) when c = 0 . In viewing a

source under the surface the

narrow bundle of rays which reach

the eye from the-source emanate

from the' neighborhood.. of a. virtual
source .on the.caustic. When v-lescied

from. directly above, ce = O, one
ssees the virtual source' S' at a -/

-di-stance -l- below the surface. Fbr a larger angle of regard

the virtual souree. 'r to the `surface tnd somewhat displaced

/2 . 2
cos

c. -dos e S-
A

<

toward the: 'observer, and in the approaches , the source

appears to be at- the surface..

_ . ..
. .

Consider the; two-dimensio;al problem. of set of parallel-rays in

gr.--
,"edium 1 ineident on a convex seMici le and strip of medium 2

...-
. in the accompanying fi e. Obtai the parametric equations for

.
-. 4... e caustic. Sketch the- caustic for p.1 = 3'

,r,

el////fill



- Let .A be the sradius
of .the
parameter take.; the angleN-.
.a 'made by:"'the incident

:_ray with the normal.
The equation-,o-f- the re-;-
fracted .ray (see Figure

(i)

where

y = a- sin CC - (

we may el Trlinate

leaII13
to a and use --ft --da cos

j3 by means of . sin j3 = 1 sin Ci . For
in (i). Differentiate in (I) withrespect
cos a to obtain.

1.1

0.= a cos a + a. sin a tan(a

Solye for x in this .equation

parametric equatihns

-X =

0) 4- a cos 00

:

(3_ cos Cr.
coS?(d cos 0'

and substitute in (i) to_ obtain. the

2
ci)s(de --0)

-µ cos j3 7.- cos -a:.

Y a cosh 13 sin(a 13)
p.',cos 13 cos a ,.s

illThe ,caustic may .be plotted. from these equations, ..64. obt,airled by ray

1086 26 "
4.1



C'onsider the case
equations for the

caustic for µ =

cylindrical AgleiSS

where

3-5-3

where medluim 2 is-a circle. Ohtain parametric
caustic of the .twice refracted' rays. Sketch the

.t...here:."6- shadow? Try illuminating a

of water with a flashlight.)-

second_ refraCt:ed .nays- we have 'the equation

y = a sin * a.-cgs' *)taip.(ct

213 - Cx ;.- see Figure ( c).

>
a

.1r)

Figure (c)

Differentiate (11 ) with respect to * and use

d* del

da
2

da -cos
cos a1 = 1 v

P. fet

a cos * - a sin

whence

tan(a *)

,

20c - a cos.*)(u cos-
cos (x .-*)( cos

,;;/-
obtain the parametric equations

The

a

cos a '(2 cos a - p. cos 13)cos(a -
I 2(p. cos f3 - cos a)

[cos a (2 cos a - .cos 13)
2(7u cos 13 - cos a)

,second refracted rays are indicated in Fi

a

COS a)
cos



litigure (d)

There is ar regron of complete shados:i (sheided.inike figureY--
adjacent to a region of dim. illumiriatiori outside the caustic.

-



Consider sun.li
large yolume, o.
of the rairibow..

L.401e1,1k, .

V

illunating a -large. number of drops over a ,very
ace -and discuss tiOzel one will see the familiar arc

-

The most .115 'n-se =rays of 'a given color 'Which -reach the eYe-'frOM the

rainbow_make ed_angle 95_

nt .rays-froth. the
PAIS the '.back .-scattered_

- -

with the. 111C1. te
r

a circular cone with

-ve e 20 and axis '
- directed from the eye paraliei

- to' the incident_ sol.sr radiation:.

Vilign'tlie sun as low on" the horizon

a person standing orr a high: building

or a- mountain can see: the' almost complete

about the' shadow -of thii head.
.

c 7

-..

circle -of the rainbow centered

.- . .

4. -.Show that -95 is a .makirrrizt. for -the. priMary rainbow, and a minimum for

-.- the- secondary bow: Using -the fact'sthat µ(a) increases as the colors
........ go from red to state--the appearance of ttie primary and secondary

Arcs in space and, the orders of .the. colors in thd two cases . -Derive (16) .

3

-
It is more convenient for the general se :to consider not the angle

but_ the total angle *. through

which the incideirt. ray is deflected.
. -

At.-the first refraction the ray
..

.
is deflected through. the angle

Cr - f3 . The ray next Meets the

surface at. the same angle (3 with

the normal and is deflected through

the angle .r. 2/3 in a reflection.or a - in a refraction.

consider a,,iray which is refreicted outward. after internal:reflections;
_ .

. the total deflection- is

0

If we

)-

i, V'
.



. n. t 1
Since

(ii) Elk .. cos a
da u .cos 13-

we 'Obtain

(ilia)
With :Snell

cos = ( + 1) cos ci

re

obtau_(16)

.
. ,

p. sin 0.

in .idia)

To determine; the nature of the extremum. 0 for .the ....primary ands .

secondary bows , we observe--from ( i), ( ii) , (1.iia)- and -( i_ilb) that2a. gr a -,=. 2 tan d Ci i > 0_ - at the -stationary point; Or
a2 + 1,)s, 2 .

tr5sr
,. s

calculate in general
2 - 2- 2(n ÷ 1)dft 2(21 # 1)-( I)sinda p.3 cos

thus * is a minim, For the primary rainbow,
0 7hence Os is a itaathaum; for the secondary-bow

is a mirtimrm,

*s.
hence

Since Os 429 for the primary bow and 0 = 51° for the secondary bow,
the secondary bow lies- de the primary bow. Furthermore 0 is a

. sdecreasing function ot, p. for the primary bow, thus as 0 decreases the
colors from the outside to the inside of the bow through red,
yellow, blue in that order. For the secondary rainbow, 0 is an
increasing function of p... and the order of the colors is reTersed....

Sketch the variation of; mith height scorresibkading td the Situations
- . .

shown in Figure 15-3S.-.and:Fi-gare.
. -



From (20) - is. .= ch + (d1-c)2------7Take the x-axis . vertioa11/ upward' In,
_ dy

Figure 15-31, let P be the, highest point of the ray- As we ppceed
, --.

°- ilong"the ray from any point. toward- .P' x.,- increaSesi and idx1 -decreases:toward-
.

. - -- .. AY. ...'.-
.Thus p. dgcreases with altitude.. .

Y
If n is the unit normal vector

to-the':curve then-
. .

where' -r.-
.

is constructed as izn the adjacent
. -

figure. -,StmLs it is easy .to obtain

tplot of M.=:: --k*; geometrically.

A similar:argument for Figure .15-3j shows in that case 'tlat g increases
e

yiih.altitude along the mirage form:ring ray.

Solutions Exercises 15-4

1. 'Derive the- relation between flux and path length, Equation (16) from
- Equation (14).

Consider the paths to the point (x,y) by way of tne convex mirror

sUrface.(see figure). Let

= -( cos -a, sin a) be the

normal to the mirror. The tan-
,

gent is t = (sin. a , -cos a)

(E,n) is' the point where

the path .meets the mirror, the

path length is
.

L =. g -1- R

as defined in Section 15-2, Equation (3). We have, as in Equation (4)

of Section 15-2,

-447-t" cos e) e
4

where the prime may denote differentiation- with respect, to any parameter'
along the mirror curve. As we saw'before,_-the condition'` that -L be

.stationary, L= LEA, is that -Lt = 0 , whence

e 9.(ii)
1

sin
cos 9 tan. 7: 7 ;tan a



Not let the parameter be arclength along the mirror curve-, so that
the mirror :curvatUre is- by defif2 it on; a ..,.. C1=1 := I : where the dot..7 - ds a -'

:inacates differentiation with respect to s .. Now,_' = sin CE-;
.. .

..71,.-=-- -cos a , :and from

;4- R cos

From (I); on differentiation."with respect to s 'we have

L E(i cos + sin^ sin e- - -71 cos e)e
In -this equation, tenter the condition (ii) to obtain with the aid. of.

and - :

C

whence

.-.,

E Ti.)..s --2a

-a sin 2cx cos a .

sin, a R

cos2 a
a

= - cos cx R

2 cos at- a
a

a(R
CO S

.

Enter this in (-I4) to' "g-et.

:\*as
, 2

F - cos a
C - Fo

RLH.

respect, to

cezher form ecfr-(16) let the prime denote differentiation. with
--

. .n .

7L Li
ds

L =

-4

da -dcX .!la
(71; +<itt ds

-Under the condition LTH = 0 we have

1092 2



and

(I) .gx sin e = a sin e

which yielda (19 immediately.
1.

(b).. Show that the errorr in (20}. is at most first. order

. ' vaVe rorms
1 s 2.

and U2 in (20) are given' by (16).;

a

1093



.

4

TO firSt order in c we have

2
1 c cos e sin 9 ,

-..-

From which the restil.t. follows 3.raraed-ietely.,....

"Determine the extrema of .Le.scattering amplitude G(e ), for a -Slits,
sinEquation (33)- ".by C.aleulatl:ng--- the- e rema of : x (The

.
_ .

graph is given in r gurtt.A

It is assume that the unction is 'extended ,contintlus
-

we see that tiae eictrema occUr:when

(i)

From

2 sin x - 2x cos x 4..2 sin x'fat (4
x3 .

we see that the second derivative at an extremum satisfies

(ii) fu( n X2 sin x .x _

Furthermore., since tan x - x is.increasing in each of the intervals
1 .1- T]lr [n -)it) Where tan x is defined, only one such extreme

exists in each Such interval. We need only consider x > 0 since
sin has even symmetry. For x 6- , 1 Is a maximum. F'51. ,

> 0 . the -sign .of f"(x) at..an extremism is determined
. frcin ( ii)- .by the

sign-of- '. sin -X:- Since x > 0 , extremism can 'only" occur. when

tan x. > .0 hence (=I En 4' iv) n 1 , 2 Thus,. ate-2
extremum.,when is even f"(x).<0:y and when n is odd

.

Consequently. even'_ '-n -6.orre-Si)oncis to a maximum and odd -21.- to e minimum.
To ,Tobete .the:extreMa .(±) thnit for large x , tan x mist
alSobe we may take as a first estimate.te. fcir the, n -th extreme



15-6

e. the- -equation

2
1c aretan[(n

.

.to obtain an iteration- scheme. c

Another Pr.ocedure iso .estimate, by-

-r-an x =- (n + 1)* - e- - cos. *e
sin e 2

Expand to second order in 6 within

cos E = [(n + - clsin c2
1

2
[Oa +1

. .
(n

0.: rrecisan..,do 'E.

(1.1.1.) . .
1

From ( Jet) we obt.E.in succa604.ve1 Sr _n .=

. - .X. 1.433r ; :3.14-7zr
. -irliich correspond to the" respectiye-function vo:lues:

o.

(X)'- -c).2?-, p..13 W

With. x w (h. SC we have



IA.

Sol:LI-40ns _Exercises -15--7 _-

1. Sketch vgctor.diliagrams for the first zero and first and Secona7extrema
_ - sin(ka sin 9)or 1,, az) of Equation -(4-)-, where ..e e .kay.sin

°

For simplicity take a = 1-0 and set, r - k sin e . The veCtO
is traced out by .the point. (complex number P) given by

-In 'terms of the parameter

.

1414e

cx.+ 1

a*, the point P = (x,y)

- t, -- e=i for
77

for

...

1 r ....

--isin' Ire 4-7sin y]T

y = r1 s'- -Ccos'ya - co
. le]

for non-zel"o y. and -1 < a < 1 . For the

have; y = v. and the point P ...traces

out the circle x4 (y 2.-.)2
2

exactly- once, Fi -(a) , so that ,the

resultant- Q is For the first

we have ...T = 0 and

_the_ trace of P is the -line Segment,

x a 4: 1 ,. y O. for -1 < a.< 1 ,

maximum of .r(e)

:Figure ,b) ;
'ininliaiim) -is

-tris.ce of.

(the numbers

The second axtremum.;<a _
-

given by 14..31T: The .70
is an "arc of the..,,citrcie

-

are apiTeximate)

- 1.
(x 4.,......21.67y -.03252 =

J.

r .5

'1114T=: 0

is given by

diagram

first"--;zr-o of. r (e) ,
r

- - Figure _(a).

14. **41:t41"k ..Figure (b).

.

..for a -tbtal cen-t,ral angle' -of Jr

2r."2-- Figura" (c).).- Thus
t he circle. is .cOmp1etelyr lapped and

.

the resultant is. reached' after the
.first lap...

2
_1096 '2



Solutions Exercises ,1

-Verify that the 'plane waves
-±ikx a +iky sin a -5,astII = e

are solutions of (9) as claimed.

The result follows on.addition:of'
g2LT 2

4x2 -=
-k TJ ,

a2u = -k; s in aay2

1 421.1

v2 at2

-where csi =

2. Show that any sufficiently differentiable fUnCtion of the form.
U = F(vt - + G(vt + x)

satisfies' Equation (8) .`

Tco derivatives are i.equired. We have

-

Note in

a2
.

F(vt -x) 1 44- Fae . v2 4.t2.

the equation above tha.t

_c) 2

2
F(v-t 2-

Y- aX V
.

r

and

a2 .V't + X.) ="

3. VeriTy that. a

only if

ate ,

a

v-t -

2 .

+ G(vt+x)'
ax
1 a 2

G(vt + x)v2 at2

=Fn(Irt -

v-t +-x Gif(y-t x

)
solution of the wave equation (-10) r' the

-E(x.,y,z,t) = f(x,y,z)g(t)

7
, .

1 d-gytl
.tY1Z.1". 2

const..f : ,77y. .77 y .g (t) dt.

15 -a 7

m.

form (17), namely



??

We have

,0 = (A _ 2 f
-

y3r,z)g(t)-
v at

C.,. 7

2
af'6,y.,z)g(t).] - 9"- 2 ff(x.,,Y,z)g(t)3

v

,

f(x-y i) 421-
..-*g(t)6f(X1Y0z) 2:g(t)V2 at

whence the result is immediate.

C

. -

Obtain (1), and (44) e s solutions of the linear system (38) 7.(41):

For brevity suet .

a = e IKa-Ika
= e .

Then _Ot and (39) may be put in the respective forms

b
. ..(lia) . ce" -1--&- = +73-, + flbilte.

..0

b...."'(ilb) :
.2..-(ce k; = -.+ ... 0,10.2 cc. 13.. i !.

.. .........

-where s,4EN R-',..iLlii-tlin the;..text7_ Add and subtract..(lia).p.nd (lib) t& et
....

(z ,.3.) j+ z a ,

1
-21? = rci,(Z - 1) + .

7F-fq- cc

Put (40) and (41) in the respective Tort=
air .

b
a(f3b -=) = T

12.

(ivb).

-

s

= T .

° Eliminate in these equations to obtain

). 434 - 1)b4. 4- 1)b:

O



_a2E.1 -04]

Z' + 1 Z
Z 1 Z + -

. -

which Ls Equation (.43),.. in the' present.' nota_tion

. To obtain T observe from (v) that

b = Qt314-b

fronrriiia), that

(z-+ 3---)13.{a2 Q.R]P7a -
- .

'orj from 2Z = +, Z (1 -M.

(viii)

Enter (vii) aid zrlii) in (.iva) to- obtain

5 2b -
a.

A [a QR]
c + Q.)tx

T Qa2)

i32-(1 '4._ Q132) (a2

1 + Q
1r

Use the value of R. given In (vi) 1n-this q,xpresscoxi for' T

ae(1-+ QS2)(1
2

2P
. - -

to obtain'

5. Derive Equations Pal an
4

solution satisfies therE

---f

. . . . ,
..i. :- 1..%

-. .. .:
: ,. .. Cr' -... y,..

, - . . ... .

.,,,..-. where ..1r. =.j.i.k . On:the' boundary, x -= O , *Ke have the

). in the, two media namely

<.O

o

dX .1!L -d.2t

the conditl-ons apprOiiiate to planar-Scatterer:
4.

S



(ivb)

= Ei + Es Ei a eikx kx
, Es ge

where the

Infinity.

forth.

E2 b'e °

co)

implication of (ivb) is that there is no waverrom plus

Thus, 'under condition (1vb)., thA E739.ution of (ii) has the
w,

We write., from *(iva}

-(vi)

and we need dete4§Ane only *the two constants b: and g . of (v) and (Vi)
.

to salve the problem. From the surface condltion-(iii) we have

whence

1 t g

In the notation of Number lc, with Z = 1 - Q

Q 1 Q
2Q g- - 2Q

-Withthese constants,,Twebave 1:n'the,two .media-..
. .

_ .
. .. ....-

ikx 1
C4

+- Q-- -4:kios= E E = e
1

.4-
. - s- P


